Araştırma Makalesi
BibTex RIS Kaynak Göster

Akıllı Tarımda (Tarım 4.0) İlaçlama Teknolojisi

Yıl 2024, Cilt: 17 Sayı: 1, 15 - 29, 20.11.2024
https://doi.org/10.58688/kujs.1493660

Öz

Tarım sektörü, insanlığın hayatta kalması için temel bir ihtiyaç olan gıda üretiminin temelini oluşturur. Ancak, nüfus artışı, iklim değişikliği ve doğal kaynakların azalması gibi faktörler, tarımın daha verimli, sürdürülebilir ve verimli hale getirilmesi gerektiği gerçeğini ortaya koymaktadır. Bu bağlamda, geleneksel tarım yöntemlerine kıyasla daha akıllı, yenilikçi ve teknoloji odaklı bir yaklaşım olan "Tarım 4.0" kavramı ortaya çıkmıştır. Tarım 4.0, tarımsal üretim süreçlerini dijital teknolojilerle entegre ederek, tarımın daha verimli, sürdürülebilir ve rekabetçi hale gelmesini amaçlar. Bu yaklaşım, çiftçilere daha fazla verimlilik, daha düşük maliyetler ve daha az çevresel etki sağlayarak tarımsal üretimi optimize etmeyi hedefler. İlaçlama teknolojisi, Tarım 4.0'un önemli bir bileşenidir. İlaçlama, zararlı organizmalarla mücadele etmek ve bitki hastalıklarını kontrol altında tutmak için kullanılan önemli bir tarımsal uygulamadır. Geleneksel ilaçlama yöntemleri genellikle zaman alıcı, maliyetli ve çevre dostu olmayabilir. Ancak, Tarım 4.0 ile birlikte gelişen akıllı ilaçlama teknolojileri, bu sorunları ele almak için çeşitli yenilikçi çözümler sunmaktadır. Bu makalede, Tarım 4.0'unilaçlama teknolojisine entegrasyonunun önemi ve etkisi incelenecek, ilgili literatür taraması yapılacak, metodoloji açıklanacak, elde edilen sonuçlar değerlendirilecek ve gelecekteki tartışmalar için bir temel oluşturulacaktır.

Kaynakça

  • Ahmad, F., Qiu, B., Dong, X., Ma, J., Huang, X., Ahmed, S. Ali Chandio, F. (2020). Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Comput. Electron. Agric. 172, 105350, doi:10.1016/j.compag.2020.105350
  • Al Heidary, M., Douzals, J.P., Sinfort, C., Vallet, A. (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Prot., 63: 120-130, doi:10.1016/j.cropro.2014.05.006
  • Al-Gaadi, K.A., Ayers, P. (1999). Integrating GIS and GPS into a spatially variable rate herbicide application system. American Society of Agricultural Engineers, 15, 255-262
  • Ali, M.A., Nasir, A., Khan, F.H., Khan, M.A. (2011). Fabrication of ultra low volume (ULV) pesticide sprayer test bench. Pakistan J. Agric. Sci., 48, 135-140
  • Antuniassi, U.R. (2015). Evolution of agricultural aviation in brazil. Outlooks Pest Manag., 26, 12-15
  • Bahlol, H.Y., Chandel, A.K., Hoheisel, G.A., Khot, L.R. (2020). The smart spray analytical system: Developing understanding of output air-assist and spray patterns from orchard sprayers. Crop Prot. 127, 104977, doi:10.1016/j.cropro.2019.104977
  • Baio, F.H.R., Antuniassi, U.R., Castilho, B.R., Teodoro, P.E., da Silva, E.E. (2019). Factors affecting aerial spray drift in the Brazilian Cerrado. PLoS One, 14 (6), doi:10.1371/journal.pone.0212289
  • Baio, F.H.R., Silva, E.E., Vrech, M.A., Souza, F.H.Q., Zanin, A.R., Teodoro, P.E. (2018). Vegetation indices to estimate spray application rates of crop protection products in corn. Agronomy Journal, 110, 1254-1259
  • Bannari, A., Morin, D., Bonn, F., Huete, A. (1995). A review of vegetation indice remote Sensing Reviews, 13, 95-120.
  • Bietresato, M., Boscariol, P., Gasparetto, A., Mazzetto, F., Vidoni, R. (2014). On the design of a mechatronic mobile system for laser scanner based crop monitoring. In Proceedings of the Proceedings of the 14th Mechatronics forum International Conference, 16-18 June, Karlstad, Sweden.
  • Brann, J.L. (1956). Apparatus for application of insecticides. Annual Review Entomology, 1, 241-260
  • Brown, D., Giles, D., Oliver, M., Klassen, P. (2008). Targeted spray technology to reduce pesticide in runoff from dormant orchards. Crop Protection, 27 (3), 545-552 doi:10.1016/j.cropro.2007.08.012
  • Bui, Q. (2005). VariTarget - A new nozzle with variable flow rate and droplet optimization. Tampa. Florida: The American Society of Agricultural and Biological Engineers, 17-20 July, Florida (Tampa), ABD.
  • Burks, T.F., Shearer, S.A., Gates, R.S., Donohue, K.D. (2000). Backpropagation neural network design and evaluation for classifying weed species using color image texture. Transactions of the ASAE, 43, 1029-1037 doi:10.13031/2013.2971
  • Chen, H., Lan, Y., Fritz, B.K., Hoffmann, W.C., Liu, S. (2021). Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV). International Journal of Agricultural and Biological Engineering, 14, 38-49 doi:10.25165/j.ijabe.20211401.5714
  • Chen, Y., Zhu, H., Ozkan, H.E., Derksen, R.C., Krause, C.R. (2011). An experimental variable-rate sprayer for nursery and orchard applications. In Proceedings of the 2011 Louisville, 7-10August, Kentucky, ABD.
  • Courshee, R.J. (1960). Some aspects of the application of insecticides. Annual Review Entomology, 5, 327-352
  • Doruchowski, G., Holownicki, R. (2000). Environmentally friendly spray techniques for tree crops. Crop Protection, 19, 617-622 doi:10.1016/S0261- 2194(00)00081-8
  • Dou, H., Zhang, C., Li, L., Hao, G., Ding, B., Gong, W., Huang, P. (2018). Application of variable spray technology in agriculture. IOP Conf. Ser. Earth Environ. Sci., 186 (5), 1-11 doi:10.1088/1755-1315/186/5/012007
  • Edward, Law. (2001). Agricultural electrostatic spray application: A review of significant research and development during the 20th century. Journal of Electrostatics, 51-52, 25-42 doi:10.1016/S0304-3886(01)00040-7
  • Fesal, S.N.M., Fawzi, M., Omar, Z.A. (2017). Numerical analysis of flat fan aerial crop spray. In Proceedings of the IOP Conference Series: Materials Science and Engineering IOP Publishing, 243, 12044
  • Foqué, D., Braekman, P., Pieters, J.G., Nuyttens, D.A (2012). Vertical spray boom application technique for conical bay laurel (Laurus nobilis) plants. Crop Prot., 41, 113-121
  • Fox, R.D., Derksen, R.C., Zhu, H., Brazee,R.D., Svensson, S.A. (2008). A History of Air-Blast Sprayer Development and Future Prospects. American Society of Agricultural and Biological Engineers, 51, 405-410.doi:10.13031/2013.24375
  • Gayathri, D.K., Sowmiya, N., Yasoda, K., Muthulakshmi, K., Kishore, B. (2020). Review on application of drones for crop health monitoring and spraying pesticides and fertilizer. Journal of Critical Reviews, 7, 667-672 doi:10.31838/jcr.07.06.117
  • Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J.R., Gallart, M., Escolà,(2014). Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors (Switzerland), 14, 691-708 doi:10.3390/s140100691
  • Giles, D.K., Akesson, N.B., Yates, W.E. (2008). Pesticide application technology: Research and development and the growth of the industry. American Society of Agricultural and Biological Engineers, 51, 397-403 doi:10.13031/2013.24377
  • Giles, D., Blewett, T. (1991). Effects of conventional and reduced-volume, charged- spray application techniques on dislodgeable foliar residue of captan on strawberries. Journal of Agricultural and Food Chemistry, 39, 1646-1651 doi:10.1021/jf00009a600
  • Giles, D., Law, S., Tringe, J. (2009). Materials handling for electrical modification of a complex target surface: Analysis and feasibility (No. LLNL-TR-409708). Livermore, CA: Lawrence Livermore National Laboratory (LLNL).
  • Giles, D., Billing, R. (2015). Deployment and performance of a UAV for crop spraying. Chemical Engineering Transactions, 44, 307-312.
  • Gonzalez, R., Richard, E. (2002). Digital image processing. Upper Saddle River, NJ: Prentice Hall.
  • Guo, S., Li, J., Yao, W., Zhan, Y., Li, Y., Shi, Y. (2019). Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. PLoS One, 14, 1-16 doi:10.1371/journal.pone.0220024
  • Gupte, S., Mohandas, P.I.T., Conrad, J.M. (2012). A survey of quadrotor unmanned aerial vehicles. In Proceedings of the 2012 Proceedings of IEEE Southeastcon, 15-18 March, Orlando, USA.
  • Huang, K. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, 57, 3-11. doi:10.1016/j.compag.2007.01.015
  • ImranAhmed, A., Islam, M., Gul, S. (2008). Edge based real-time weed recognition system for selective herbicides. In Proceedings of the International Multiconference of Engineers and Computer Scientists, 19-21 March, Hong Kong.
  • Jadav, C.V., Jain, K.K., Khodifad, B.C. (2019). Spray of Chemicals as Affected by Different Parameters of Air Assisted Sprayer: A Review. Current Agriculture Research Journal, 7, 289-295 doi:10.12944/carj.7.3.03
  • Kim, K.H., Kabir, E., Jahan, S.A. (2017). Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525-535.
  • Lacar, F., Lewis, M., Grierson, I. (2001). Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia. In Geoscience and remote sensing symposium (IGARSS’01 IEEE), July 09-13, Sydney, Australia.
  • Ladd Jr, T.L., Reichard, D.L., Collins, D.L., Buriff, C.R. (1978). An automatic intermittent sprayer: A new approach to the insecticidal control of horticultural insect pests. Journal of Economic Entomology, 71, 789-792
  • Lan, Y., Shengde, C., Fritz, B.K. (2017). Current status and future trends of precision agricultural aviation technologies. International Journal of Agricultural and Biological Engineering 10 (3):1-6
  • Li, L., He, X., Song, J., Liu, Y., Zeng, A., Yang, L., Liu, C., Liu, Z. (2018). Design and experiment of variable rate orchard sprayer based on laser scanning sensor. International Journal of Agricultural and Biological Engineering, 11, 101-108. Doi:10.25165/j.ijabe.20181101.3183
  • Maas, W. (1971). ULV application & formulation techniques. NV. ULV Appl. Formul. Tech. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands.
  • Mogili, U.R., Deepak, B.B.V.L. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502-509. doi:10.1016/j.procs.2018.07.063
  • Moltó, E., Chueca, P., Garcerá, C., Balsari, P., Gil, E., van de Zande, J.C. (2017). Engineering approaches for reducing spray drift. Biosystems Engineering, 154, 1-2.
  • Muhammad, M.N., Wayayok, A., Mohamed Shariff, A.R., Abdullah, A.F., Husin,E.M. (2019). Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Computers and Electronics in Agriculture, 167. doi:10.1016/j.compag.2019.105045
  • Niazmand, A., Shaker, M., Zakerin, A. (2008). Evaluation of different herbicide application methods and cultivation effect on yield and weed control of corn (Zea mays). Journal of Agronomy, 7: 314-320 doi:10.3923/ja.2008.314.320
  • Niekerk, J.M.V., Mavuso, Z.S. (2011). Evaluation of ultra-low volume (ULV) fungicide applications for the control of diseases on avocado fruit - Results from the 2009 / 10 season. South african avocado growers’ association yearbook, 71-76.
  • Okamoto, H., Murata, T., Kataoka, T., Hata, S. (2007). Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biology and Management, 7, 31-37 doi:10.1111/j.1445-6664.2006.00234.x
  • Patel, M.K. (2016). Technological improvements in electrostatic spraying and its impact to agriculture during the last decade and future research perspectives –A review. Engineering in Agriculture, Environment and Food, 9, 92-100. doi:10.1016/j.eaef.2015.09.006
  • Patel, M.K., Kundu, M., Sahoo, H.K., Nayak, M.K. (2015). Enhanced performance of an air-assisted electrostatic nozzle: Role of electrode material and its dimensional considerations in spray charging. Engineering in Agriculture, Environment and Food, 9 (4), 332-338.
  • Pergher, G., Petris, R. (2009). A Novel, Air-Assisted Tunnel Sprayer for Vineyards: Optimization of Operational Parameters and First Assessment in the Field. Journal of Agricultural Food, 40, 31. doi:10.4081/ija.2009.4.31
  • Pierce, R., Ayers, P. (2001). Evaluation of deposition and application accuracy of a pulse width modulation variable rate field sprayer. Environmental Science ASAE, 01, 1077. doi:10.13031/2013.3432
  • Piron, A., Leemans, V., Kleynen, O., Lebeau, F., Destain, M. (2008). Selection of the most efficient wavelength bands for discriminating weeds from crop. Computers and Electronics in Agriculture, 62, 141-148. doi:10.1016/j.compag.2007.12.007
  • Qin, W.C., Qiu, B.J., Xue, X.Y., Chen, C., Xu, Z. F., Zhou, Q.Q. (2016). Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85, 79-88
  • Rosell, J.R., Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141.
  • Scotford, I., Miller, P. (2005). Applications of spectral reflectance techniques in northern European cereal production: A review. Biosystems Engineering, 90, 235-250. doi:10.1016/j.biosystemseng.2004.11.010
  • Shi, Q., Mao, H., Guan, X. (2019). Numerical simulation and experimental verification of the deposition concentration of an unmanned aerial vehicle. Applied Engineering in Agriculture, 35, 367-376.
  • Shrimpton, J.S. (2003). Electrohydrodynamics of charge injection atomization: Regimes and fundamental limits. At. Sprays, 13.
  • Slaughter, D., Giles, D., Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61, 63-78. doi:10.1016/j.compag.2007.05.008
  • Song, Y., Sun H., Li M., Zhang Q. (2015). Technology Application of Smart Spray in Agriculture: A Review. Intelligent Automation & Soft Computing, 21 (3), 319-333. DOI: 10.1080/10798587.2015.1015781
  • Songchao, Z., Xinyu, X., Zhu, S., Lixin, Z., Yongkui, J. (2017). Downwash distribution of single-rotor unmanned agricultural helicopter on hovering state. International Journal of Agricultural and Biological Engineering, 10, 14-24.
  • Staab, E., Slaughter, D., Zhang, Y., Giles, D. (2009). Hyperspectral imaging system for precision weed control in processing tomato. Grand Sierra Resort and Casino Reno, Nevada: The American Society of Agricultural and Biological Engineers (Paper Number: 096635)
  • Sumner, H., Herzog, G. (2000). Assessing the effectiveness of air-assisted and hydraulic sprayers in cotton via leaf bioassay. The Journal of Cotton Science, 4, 79-83.
  • Sun, H., Li, M., Zhou, Z., Liu, G., Luo, X. (2010). Monitoring of Cnaphalocrocis Medinalis Guenee based on canopy reflectance. Spectroscopy and Spectral Analysis, 30, 1080-1083.
  • Teske, M.E., Thistle, H.W., Schou, W.C., Miller, P.C.H., Strager, J.M., Richardson,, Ellis, M.C.B., Barry, J.W., Twardus, D.B., Thompson, D.G. (2011). A review of computer models for pesticide deposition prediction. Trans. ASABE, 54, 789-801.
  • Tian, L. (2002). Development of a sensor-based precision herbicide application system. Computers and Electronics in Agriculture, 36, 133-149. doi:10.1016/S0168-1699(02)00097-2
  • Viret, O., Siegfried, W., Holliger, E., Raisigl, U. (2003). Comparison of spray deposits and efficacy against powdery mildew of aerial and ground-based spraying equipment in viticulture. Crop Protection, 22, 1023-1032. doi:10.1016/S0261- 2194(03)00119-4
  • Wen, S., Han, J., Ning, Z., Lan, Y., Yin, X., Zhang, J., Ge, Y. (2019). Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds. Computers and Electronics in Agriculture, 166, 105036. doi:10.1016/j.compag.2019.105036
  • Wise, J. C., Jenkins, P.E., Schilder, A.M., Vandervoort, C., Isaacs, R. (2010). Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Protection, 29, 378-385. doi:10.1016/j.cropro.2009.11.014
  • Xu, H., Ying, Y., Fu, X., Zhu, S. (2007). Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf. Biosystems Engineering, 96, 447-454. doi:10.1016/j.biosystemseng.2007.01.008
  • Yang, Z., Niu, M., Li, J., Xu, X., Xu, J., Chen, Z. (2015). Design and experiment of an electrostatic sprayer with online mixing system for orchard. Transactions of the Chinese Society of Agricultural Engineering, 31, 60-67.
  • Yarpuz-Bozdogan, N. (2018). The importance of personal protective equipment in pesticide applications in agriculture. Current Opinion in Environmental Science & Health, 4, 1-4. doi:10.1016/j.coesh.2018.02.001
  • Zhang, B., Tang, Q., Chen, L., Zhang, R., Xu, M. (2018a). Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach. Biosystems Engineering, 166, 184-199.
  • Zhang, H., Zheng, J., Zhou, H., Dorr, G.J. (2017a). Droplet deposition distribution and off-target drift during pesticide spraying operation. Nongye Jixie Xuebao, 48, 114-122.
  • Zhang, Y., Li, Y., He, Y., Liu, F., Cen, H., Fang, H. (2018c). Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Computers and Electronics in Agriculture, 148, 8-18. doi:10.1016/j.compag.2017.08.004
  • Zhang, Y.L., Lian, Q., Zhang, W. (2017b). Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop protection. International Journal of Agricultural and Biological Engineering, 10, 68-76. doi:10.25165/j.ijabe.20171006.3460
  • Zhang, Z., Wang, X., Lai, Q., Zhang, Z. (2018b). Review of Variable-Rate Sprayer Applications Based on Real-Time Sensor Technologies. Automation in Agriculture - Securing Food Supplies for Future Generations doi:10.5772/intechopen.73622
  • Zhao, S., Castle, G., Adamiak, K. (2008). Factors affecting deposition in electrostatic pesticide spraying. Journal of Electrostatics, 66, 594-601. doi:10.1016/j.elstat.2008.06.009
  • Zheng, J., Zhou, H., Xu, Y., Zhao, M., Zhang, H., Ge, Y., Chen, Y. (2004). Pilot study on toward-target precision pesticide application in forestry. ASAE/CSAE Annual International Meeting, Paper Number: 041006. Ottawa, Canada.

The Role of Pesticide Technology in Agriculture 4.0: The Smart Farming Approach

Yıl 2024, Cilt: 17 Sayı: 1, 15 - 29, 20.11.2024
https://doi.org/10.58688/kujs.1493660

Öz

The agricultural sector forms the cornerstone of humanity's survival by providing the fundamental need for food production. However, factors such as population growth, climate change, and dwindling natural resources underscore the need to make agriculture more efficient, sustainable, and productive. In this context, the concept of "Agriculture 4.0" has emerged as a smarter, more innovative, and technology-driven approach compared to traditional agricultural methods. Agriculture 4.0 aims to integrate agricultural production processes with digital technologies to make agriculture more efficient, sustainable, and competitive. This approach seeks to optimize agricultural production by providing farmers with increased productivity, lower costs, and reduced environmental impact. Pesticide technology is a crucial component of Agriculture 4.0. Pesticides are essential agricultural practices used to combat harmful organisms and control plant diseases. Traditional pesticide methods may often be time-consuming, costly, and environmentally unfriendly. However, with the advent of Agriculture 4.0, smart pesticide technologies are offering various innovative solutions to address these challenges. This article will examine the importance and impact of integrating pesticide technology into Agriculture 4.0, conduct a relevant literature review, explain the methodology, evaluate the findings, and lay the groundwork for future discussions. The abstract should consist of a single paragraph of no more than 200 words and should provide an appropriate overview of the study. Without a title Background (the purpose of the study should be emphasized by placing the question in broad context), Methods (the main methods or treatments applied should be briefly described) Results (summarizing the main findings of the article, providing the main conclusions or comments). The abstract should be an objective representation of the article, should not contain unverified results not presented in the main text, and the main results should not be exaggerated.

Kaynakça

  • Ahmad, F., Qiu, B., Dong, X., Ma, J., Huang, X., Ahmed, S. Ali Chandio, F. (2020). Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Comput. Electron. Agric. 172, 105350, doi:10.1016/j.compag.2020.105350
  • Al Heidary, M., Douzals, J.P., Sinfort, C., Vallet, A. (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Prot., 63: 120-130, doi:10.1016/j.cropro.2014.05.006
  • Al-Gaadi, K.A., Ayers, P. (1999). Integrating GIS and GPS into a spatially variable rate herbicide application system. American Society of Agricultural Engineers, 15, 255-262
  • Ali, M.A., Nasir, A., Khan, F.H., Khan, M.A. (2011). Fabrication of ultra low volume (ULV) pesticide sprayer test bench. Pakistan J. Agric. Sci., 48, 135-140
  • Antuniassi, U.R. (2015). Evolution of agricultural aviation in brazil. Outlooks Pest Manag., 26, 12-15
  • Bahlol, H.Y., Chandel, A.K., Hoheisel, G.A., Khot, L.R. (2020). The smart spray analytical system: Developing understanding of output air-assist and spray patterns from orchard sprayers. Crop Prot. 127, 104977, doi:10.1016/j.cropro.2019.104977
  • Baio, F.H.R., Antuniassi, U.R., Castilho, B.R., Teodoro, P.E., da Silva, E.E. (2019). Factors affecting aerial spray drift in the Brazilian Cerrado. PLoS One, 14 (6), doi:10.1371/journal.pone.0212289
  • Baio, F.H.R., Silva, E.E., Vrech, M.A., Souza, F.H.Q., Zanin, A.R., Teodoro, P.E. (2018). Vegetation indices to estimate spray application rates of crop protection products in corn. Agronomy Journal, 110, 1254-1259
  • Bannari, A., Morin, D., Bonn, F., Huete, A. (1995). A review of vegetation indice remote Sensing Reviews, 13, 95-120.
  • Bietresato, M., Boscariol, P., Gasparetto, A., Mazzetto, F., Vidoni, R. (2014). On the design of a mechatronic mobile system for laser scanner based crop monitoring. In Proceedings of the Proceedings of the 14th Mechatronics forum International Conference, 16-18 June, Karlstad, Sweden.
  • Brann, J.L. (1956). Apparatus for application of insecticides. Annual Review Entomology, 1, 241-260
  • Brown, D., Giles, D., Oliver, M., Klassen, P. (2008). Targeted spray technology to reduce pesticide in runoff from dormant orchards. Crop Protection, 27 (3), 545-552 doi:10.1016/j.cropro.2007.08.012
  • Bui, Q. (2005). VariTarget - A new nozzle with variable flow rate and droplet optimization. Tampa. Florida: The American Society of Agricultural and Biological Engineers, 17-20 July, Florida (Tampa), ABD.
  • Burks, T.F., Shearer, S.A., Gates, R.S., Donohue, K.D. (2000). Backpropagation neural network design and evaluation for classifying weed species using color image texture. Transactions of the ASAE, 43, 1029-1037 doi:10.13031/2013.2971
  • Chen, H., Lan, Y., Fritz, B.K., Hoffmann, W.C., Liu, S. (2021). Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV). International Journal of Agricultural and Biological Engineering, 14, 38-49 doi:10.25165/j.ijabe.20211401.5714
  • Chen, Y., Zhu, H., Ozkan, H.E., Derksen, R.C., Krause, C.R. (2011). An experimental variable-rate sprayer for nursery and orchard applications. In Proceedings of the 2011 Louisville, 7-10August, Kentucky, ABD.
  • Courshee, R.J. (1960). Some aspects of the application of insecticides. Annual Review Entomology, 5, 327-352
  • Doruchowski, G., Holownicki, R. (2000). Environmentally friendly spray techniques for tree crops. Crop Protection, 19, 617-622 doi:10.1016/S0261- 2194(00)00081-8
  • Dou, H., Zhang, C., Li, L., Hao, G., Ding, B., Gong, W., Huang, P. (2018). Application of variable spray technology in agriculture. IOP Conf. Ser. Earth Environ. Sci., 186 (5), 1-11 doi:10.1088/1755-1315/186/5/012007
  • Edward, Law. (2001). Agricultural electrostatic spray application: A review of significant research and development during the 20th century. Journal of Electrostatics, 51-52, 25-42 doi:10.1016/S0304-3886(01)00040-7
  • Fesal, S.N.M., Fawzi, M., Omar, Z.A. (2017). Numerical analysis of flat fan aerial crop spray. In Proceedings of the IOP Conference Series: Materials Science and Engineering IOP Publishing, 243, 12044
  • Foqué, D., Braekman, P., Pieters, J.G., Nuyttens, D.A (2012). Vertical spray boom application technique for conical bay laurel (Laurus nobilis) plants. Crop Prot., 41, 113-121
  • Fox, R.D., Derksen, R.C., Zhu, H., Brazee,R.D., Svensson, S.A. (2008). A History of Air-Blast Sprayer Development and Future Prospects. American Society of Agricultural and Biological Engineers, 51, 405-410.doi:10.13031/2013.24375
  • Gayathri, D.K., Sowmiya, N., Yasoda, K., Muthulakshmi, K., Kishore, B. (2020). Review on application of drones for crop health monitoring and spraying pesticides and fertilizer. Journal of Critical Reviews, 7, 667-672 doi:10.31838/jcr.07.06.117
  • Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J.R., Gallart, M., Escolà,(2014). Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors (Switzerland), 14, 691-708 doi:10.3390/s140100691
  • Giles, D.K., Akesson, N.B., Yates, W.E. (2008). Pesticide application technology: Research and development and the growth of the industry. American Society of Agricultural and Biological Engineers, 51, 397-403 doi:10.13031/2013.24377
  • Giles, D., Blewett, T. (1991). Effects of conventional and reduced-volume, charged- spray application techniques on dislodgeable foliar residue of captan on strawberries. Journal of Agricultural and Food Chemistry, 39, 1646-1651 doi:10.1021/jf00009a600
  • Giles, D., Law, S., Tringe, J. (2009). Materials handling for electrical modification of a complex target surface: Analysis and feasibility (No. LLNL-TR-409708). Livermore, CA: Lawrence Livermore National Laboratory (LLNL).
  • Giles, D., Billing, R. (2015). Deployment and performance of a UAV for crop spraying. Chemical Engineering Transactions, 44, 307-312.
  • Gonzalez, R., Richard, E. (2002). Digital image processing. Upper Saddle River, NJ: Prentice Hall.
  • Guo, S., Li, J., Yao, W., Zhan, Y., Li, Y., Shi, Y. (2019). Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. PLoS One, 14, 1-16 doi:10.1371/journal.pone.0220024
  • Gupte, S., Mohandas, P.I.T., Conrad, J.M. (2012). A survey of quadrotor unmanned aerial vehicles. In Proceedings of the 2012 Proceedings of IEEE Southeastcon, 15-18 March, Orlando, USA.
  • Huang, K. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, 57, 3-11. doi:10.1016/j.compag.2007.01.015
  • ImranAhmed, A., Islam, M., Gul, S. (2008). Edge based real-time weed recognition system for selective herbicides. In Proceedings of the International Multiconference of Engineers and Computer Scientists, 19-21 March, Hong Kong.
  • Jadav, C.V., Jain, K.K., Khodifad, B.C. (2019). Spray of Chemicals as Affected by Different Parameters of Air Assisted Sprayer: A Review. Current Agriculture Research Journal, 7, 289-295 doi:10.12944/carj.7.3.03
  • Kim, K.H., Kabir, E., Jahan, S.A. (2017). Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525-535.
  • Lacar, F., Lewis, M., Grierson, I. (2001). Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia. In Geoscience and remote sensing symposium (IGARSS’01 IEEE), July 09-13, Sydney, Australia.
  • Ladd Jr, T.L., Reichard, D.L., Collins, D.L., Buriff, C.R. (1978). An automatic intermittent sprayer: A new approach to the insecticidal control of horticultural insect pests. Journal of Economic Entomology, 71, 789-792
  • Lan, Y., Shengde, C., Fritz, B.K. (2017). Current status and future trends of precision agricultural aviation technologies. International Journal of Agricultural and Biological Engineering 10 (3):1-6
  • Li, L., He, X., Song, J., Liu, Y., Zeng, A., Yang, L., Liu, C., Liu, Z. (2018). Design and experiment of variable rate orchard sprayer based on laser scanning sensor. International Journal of Agricultural and Biological Engineering, 11, 101-108. Doi:10.25165/j.ijabe.20181101.3183
  • Maas, W. (1971). ULV application & formulation techniques. NV. ULV Appl. Formul. Tech. Philips' Gloeilampenfabrieken, Eindhoven, The Netherlands.
  • Mogili, U.R., Deepak, B.B.V.L. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502-509. doi:10.1016/j.procs.2018.07.063
  • Moltó, E., Chueca, P., Garcerá, C., Balsari, P., Gil, E., van de Zande, J.C. (2017). Engineering approaches for reducing spray drift. Biosystems Engineering, 154, 1-2.
  • Muhammad, M.N., Wayayok, A., Mohamed Shariff, A.R., Abdullah, A.F., Husin,E.M. (2019). Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Computers and Electronics in Agriculture, 167. doi:10.1016/j.compag.2019.105045
  • Niazmand, A., Shaker, M., Zakerin, A. (2008). Evaluation of different herbicide application methods and cultivation effect on yield and weed control of corn (Zea mays). Journal of Agronomy, 7: 314-320 doi:10.3923/ja.2008.314.320
  • Niekerk, J.M.V., Mavuso, Z.S. (2011). Evaluation of ultra-low volume (ULV) fungicide applications for the control of diseases on avocado fruit - Results from the 2009 / 10 season. South african avocado growers’ association yearbook, 71-76.
  • Okamoto, H., Murata, T., Kataoka, T., Hata, S. (2007). Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biology and Management, 7, 31-37 doi:10.1111/j.1445-6664.2006.00234.x
  • Patel, M.K. (2016). Technological improvements in electrostatic spraying and its impact to agriculture during the last decade and future research perspectives –A review. Engineering in Agriculture, Environment and Food, 9, 92-100. doi:10.1016/j.eaef.2015.09.006
  • Patel, M.K., Kundu, M., Sahoo, H.K., Nayak, M.K. (2015). Enhanced performance of an air-assisted electrostatic nozzle: Role of electrode material and its dimensional considerations in spray charging. Engineering in Agriculture, Environment and Food, 9 (4), 332-338.
  • Pergher, G., Petris, R. (2009). A Novel, Air-Assisted Tunnel Sprayer for Vineyards: Optimization of Operational Parameters and First Assessment in the Field. Journal of Agricultural Food, 40, 31. doi:10.4081/ija.2009.4.31
  • Pierce, R., Ayers, P. (2001). Evaluation of deposition and application accuracy of a pulse width modulation variable rate field sprayer. Environmental Science ASAE, 01, 1077. doi:10.13031/2013.3432
  • Piron, A., Leemans, V., Kleynen, O., Lebeau, F., Destain, M. (2008). Selection of the most efficient wavelength bands for discriminating weeds from crop. Computers and Electronics in Agriculture, 62, 141-148. doi:10.1016/j.compag.2007.12.007
  • Qin, W.C., Qiu, B.J., Xue, X.Y., Chen, C., Xu, Z. F., Zhou, Q.Q. (2016). Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85, 79-88
  • Rosell, J.R., Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141.
  • Scotford, I., Miller, P. (2005). Applications of spectral reflectance techniques in northern European cereal production: A review. Biosystems Engineering, 90, 235-250. doi:10.1016/j.biosystemseng.2004.11.010
  • Shi, Q., Mao, H., Guan, X. (2019). Numerical simulation and experimental verification of the deposition concentration of an unmanned aerial vehicle. Applied Engineering in Agriculture, 35, 367-376.
  • Shrimpton, J.S. (2003). Electrohydrodynamics of charge injection atomization: Regimes and fundamental limits. At. Sprays, 13.
  • Slaughter, D., Giles, D., Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61, 63-78. doi:10.1016/j.compag.2007.05.008
  • Song, Y., Sun H., Li M., Zhang Q. (2015). Technology Application of Smart Spray in Agriculture: A Review. Intelligent Automation & Soft Computing, 21 (3), 319-333. DOI: 10.1080/10798587.2015.1015781
  • Songchao, Z., Xinyu, X., Zhu, S., Lixin, Z., Yongkui, J. (2017). Downwash distribution of single-rotor unmanned agricultural helicopter on hovering state. International Journal of Agricultural and Biological Engineering, 10, 14-24.
  • Staab, E., Slaughter, D., Zhang, Y., Giles, D. (2009). Hyperspectral imaging system for precision weed control in processing tomato. Grand Sierra Resort and Casino Reno, Nevada: The American Society of Agricultural and Biological Engineers (Paper Number: 096635)
  • Sumner, H., Herzog, G. (2000). Assessing the effectiveness of air-assisted and hydraulic sprayers in cotton via leaf bioassay. The Journal of Cotton Science, 4, 79-83.
  • Sun, H., Li, M., Zhou, Z., Liu, G., Luo, X. (2010). Monitoring of Cnaphalocrocis Medinalis Guenee based on canopy reflectance. Spectroscopy and Spectral Analysis, 30, 1080-1083.
  • Teske, M.E., Thistle, H.W., Schou, W.C., Miller, P.C.H., Strager, J.M., Richardson,, Ellis, M.C.B., Barry, J.W., Twardus, D.B., Thompson, D.G. (2011). A review of computer models for pesticide deposition prediction. Trans. ASABE, 54, 789-801.
  • Tian, L. (2002). Development of a sensor-based precision herbicide application system. Computers and Electronics in Agriculture, 36, 133-149. doi:10.1016/S0168-1699(02)00097-2
  • Viret, O., Siegfried, W., Holliger, E., Raisigl, U. (2003). Comparison of spray deposits and efficacy against powdery mildew of aerial and ground-based spraying equipment in viticulture. Crop Protection, 22, 1023-1032. doi:10.1016/S0261- 2194(03)00119-4
  • Wen, S., Han, J., Ning, Z., Lan, Y., Yin, X., Zhang, J., Ge, Y. (2019). Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds. Computers and Electronics in Agriculture, 166, 105036. doi:10.1016/j.compag.2019.105036
  • Wise, J. C., Jenkins, P.E., Schilder, A.M., Vandervoort, C., Isaacs, R. (2010). Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Protection, 29, 378-385. doi:10.1016/j.cropro.2009.11.014
  • Xu, H., Ying, Y., Fu, X., Zhu, S. (2007). Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf. Biosystems Engineering, 96, 447-454. doi:10.1016/j.biosystemseng.2007.01.008
  • Yang, Z., Niu, M., Li, J., Xu, X., Xu, J., Chen, Z. (2015). Design and experiment of an electrostatic sprayer with online mixing system for orchard. Transactions of the Chinese Society of Agricultural Engineering, 31, 60-67.
  • Yarpuz-Bozdogan, N. (2018). The importance of personal protective equipment in pesticide applications in agriculture. Current Opinion in Environmental Science & Health, 4, 1-4. doi:10.1016/j.coesh.2018.02.001
  • Zhang, B., Tang, Q., Chen, L., Zhang, R., Xu, M. (2018a). Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach. Biosystems Engineering, 166, 184-199.
  • Zhang, H., Zheng, J., Zhou, H., Dorr, G.J. (2017a). Droplet deposition distribution and off-target drift during pesticide spraying operation. Nongye Jixie Xuebao, 48, 114-122.
  • Zhang, Y., Li, Y., He, Y., Liu, F., Cen, H., Fang, H. (2018c). Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Computers and Electronics in Agriculture, 148, 8-18. doi:10.1016/j.compag.2017.08.004
  • Zhang, Y.L., Lian, Q., Zhang, W. (2017b). Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop protection. International Journal of Agricultural and Biological Engineering, 10, 68-76. doi:10.25165/j.ijabe.20171006.3460
  • Zhang, Z., Wang, X., Lai, Q., Zhang, Z. (2018b). Review of Variable-Rate Sprayer Applications Based on Real-Time Sensor Technologies. Automation in Agriculture - Securing Food Supplies for Future Generations doi:10.5772/intechopen.73622
  • Zhao, S., Castle, G., Adamiak, K. (2008). Factors affecting deposition in electrostatic pesticide spraying. Journal of Electrostatics, 66, 594-601. doi:10.1016/j.elstat.2008.06.009
  • Zheng, J., Zhou, H., Xu, Y., Zhao, M., Zhang, H., Ge, Y., Chen, Y. (2004). Pilot study on toward-target precision pesticide application in forestry. ASAE/CSAE Annual International Meeting, Paper Number: 041006. Ottawa, Canada.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomasyon Mühendisliği
Bölüm Makaleler
Yazarlar

Hatice Dilaver 0000-0002-4484-5297

Kamil Fatih Dilaver 0000-0001-7557-9238

Yayımlanma Tarihi 20 Kasım 2024
Gönderilme Tarihi 31 Mayıs 2024
Kabul Tarihi 2 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 1

Kaynak Göster

APA Dilaver, H., & Dilaver, K. F. (2024). The Role of Pesticide Technology in Agriculture 4.0: The Smart Farming Approach. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(1), 15-29. https://doi.org/10.58688/kujs.1493660