Na+, Mn++/ H2PO2-, Cl-//H2O Üçlü Sisteminin 323K’de Çözünürlük ve Faz Dengeleri
Yıl 2024,
Cilt: 17 Sayı: 2, 75 - 80, 24.12.2024
Vedat Adıgüzel
,
Sevilay Demirci
,
Hasan Erge
,
Ali Rıza Kul
Öz
Bu çalışmada, Mn(H2PO2)2 ve NaCl’ün sulu ortamda yoğunluk ve faz dengesi üzerine değerlendirilmesi araştırılmıştır. Tüm deneyler atmosferik basıncı altında gerçekleştirildi. Çalışılan üçlü sistemin basit ötonik nokta sistemine uygun yani karışım sisteminde bileşenin belirli bir oranı, sistemin en düşük donma noktasına sahip olduğu noktada bileşenler birlikte katılaşır ve tek bir sıcaklıkta faz değişimi olduğu ve herhangi bir ikili tuz barındırmadığı görülmüştür. H2O- Mn(H2PO2)2-NaCl sisteminin alt sistemleri olan Mn(H2PO2)2-H2O ve NaCl-H2O ikili sistemlerinin çözünürlük ve yoğunluk değerleri 323 K'de sırasıyla %11,14 Mn(H2PO2)2 ve %26.86 NaCl, 1067 kg/m3 ve 1189 kg/m3 olarak tespit edildi. Bileşimin ötonik nokta bileşimi ise % 24.46 NaCl ve % 6.02 Mn(H2PO2)2 içerdiği ve yoğunluğunun 1279 kg/m3 olduğu tespit edilmiştir.
Kaynakça
- Adiguzel V., Erge H., Alisoglu V. ve Necefoglu H. (2014). Study of the solubility, viscosity and density in Na+, Zn2+/Cl−−H2O, Na+−Zn2+−(H2PO2)−−H2O, Na+, Cl−/(H2PO2)−−H2O, and Zn2+, Cl−/(H2PO2)−−H2O ternary systems, and in Na+, Zn2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 273.15K. The Journal of Chemical Thermodynamics, 75, 35-44.
- Alisoglu V. ve Necefoglu H. (1997). Étude de la solubilité dans le système Na2(NO3 VNa2(H2PO2)2/ Mn(H2PO2)2/H2O. Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy, 324(2), 139-142.
- Alisoğlu V. (2002). Analyse physico-chimique du système quaternaire Na+,Mn2+/Cl–,(H2PO2)–//H2O. Comptes Rendus Chimie, 5(6), 547-549.
- Alisoğlu V. (2005). Étude de la solubilité des phases en équilibre dans le système Na+,Mn2+/Br–,(H2PO2)–//H2O. Comptes Rendus Chimie, 8(9), 1684-1687.
- Alısoğlu V. ve Adıguzel V. (2008). Étude de la solubilité et des phases en équilibre dans le système quaternaire réciproque K+, Mn2+/Br−, (H2PO2)−//H2O. Comptes Rendus Chimie, 11(8), 938-941.
- AliŞoglu V. (1998). Étude de la solubilité et des phases en équilibre dans le système K2Br2/MnBr2/Mn(H2PO2)2/H2O. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry, 1(12), 781-785.
- Bhat G.A., Vishnoi P., Gupta S.K. and Murugavel R. (2015). Anhydrous manganese hypophosphite dense framework solid: Synthesis, structure and magnetic studies. Inorganic Chemistry Communications, 59, 84-87.
- Demi̇rci̇ S., Adıgüzel V. and Şahi̇n Ö. (2016). The Solubilities and Physicochemical Properties of NaH2PO2–NaCl–H2O, NaH2PO2–Zn(H2PO2)2–H2O, and NaCl–Zn(H2PO2)2–H2O Ternary Systems and in NaH2PO2–NaCl–Zn(H2PO2)2–H2O Quaternary System at 298.15 K. Journal of Chemical & Engineering Data, 61(7), 2292-2298.
- Jian R.K., Chen L., Zhao B., Yan Y.W., Li X.F. and Wang Y.Z. (2014). Acrylonitrile–Butadiene–Styrene Terpolymer with Metal Hypophosphites: Flame Retardance and Mechanism Research. Industrial & Engineering Chemistry Research, 53(6), 2299-2307.
- Kul A., Erge H. ve MEYDAN, İ. (2014). NaCl–BaCl2–H2O Üçlü Su–Tuz Sisteminin İzotermik Yöntemle Çözünürlüğünün ve Faz Dengelerinin Araştırılması. Yuzuncu Yil University Journal of the Institute of Natural and Applied Sciences, 19(1-2), 62-69.
- Mastai Y., Advances in crystallization processes, (BoD–Books on Demand, 2012)
- Noisong P. and Danvirutai C. (2010). A new synthetic route, characterization and vibrational studies of manganese hypophosphite monohydrate at ambient temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77(4), 890-894.
- Noisong P., Danvirutai C., Srithanratana T. and Boonchom B. (2008). Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sciences, 10(11), 1598-1604.
- Suekkhayad A., Noisong P. and Danvirutai C. (2017). Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2·H2O precursor. Journal of Thermal Analysis and Calorimetry, 129(1), 123-134.
- Van Wazer J. R., Phosphorus and Its Compounds [by]John R.Van Wazer, (Interscience, 1958)
- Wu W., Lv S., Liu X., Qu H., Zhang H. and Xu J. (2014). Using TG–FTIR and TG–MS to study thermal degradation of metal hypophosphites. Journal of Thermal Analysis and Calorimetry, 118(3), 1569-1575.
- Yang W., Yang W.J., Tawiah B., Zhang Y., Wang L.L., Zhu S.E., Chen T.B.Y., Yuen A.C.Y., Yu B., Liu Y.F., Si J.Y., Hu E.Z., Lu H.D., Hu K.H., Chan Q.N. and Yeoh G. H. (2018). Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid). Composites Science and Technology, 164, 44-50.
- Zeng Y., Yi J., Wang H., Zhou G. and Liu S. (2005). Theoretical study of H2PO2− adsorption on Ni(111) and Cu(111) surfaces. Journal of Molecular Structure: THEOCHEM, 724(1), 81-86.
Solubility and Phase Equilibrium of Na+, Mn++/ H2PO2-, Cl-//H2O Ternary System at 323K
Yıl 2024,
Cilt: 17 Sayı: 2, 75 - 80, 24.12.2024
Vedat Adıgüzel
,
Sevilay Demirci
,
Hasan Erge
,
Ali Rıza Kul
Öz
In this study, the density and phase changes of Mn(H2PO2)2 and NaCl in aqueous medium were investigated. All experiments were carried out under atmospheric pressure. It was observed that the studied ternary system was in accordance with the simple eutonic point system, that is, a certain ratio of the component in the mixture system, the components solidify together at the point where the system has the lowest freezing point and there is a phase change at a single temperature and it does not contain any binary salt. The solubility and density values of the Mn(H2PO2)2-H2O and NaCl-H2O binary systems, which are subsystems of the H2O- Mn(H2PO2)2-NaCl system, were determined as 11.14 % Mn(H2PO2)2 and 26.86 % NaCl, 1067 kg/m3 and 1189 kg/m3 at 323 K, respectively. The eutonic point composition of the composition was determined to contain 24.46% NaCl and 6.02 % Mn(H2PO2)2 and its density was determined to be 1279 kg/m3.
Kaynakça
- Adiguzel V., Erge H., Alisoglu V. ve Necefoglu H. (2014). Study of the solubility, viscosity and density in Na+, Zn2+/Cl−−H2O, Na+−Zn2+−(H2PO2)−−H2O, Na+, Cl−/(H2PO2)−−H2O, and Zn2+, Cl−/(H2PO2)−−H2O ternary systems, and in Na+, Zn2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 273.15K. The Journal of Chemical Thermodynamics, 75, 35-44.
- Alisoglu V. ve Necefoglu H. (1997). Étude de la solubilité dans le système Na2(NO3 VNa2(H2PO2)2/ Mn(H2PO2)2/H2O. Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy, 324(2), 139-142.
- Alisoğlu V. (2002). Analyse physico-chimique du système quaternaire Na+,Mn2+/Cl–,(H2PO2)–//H2O. Comptes Rendus Chimie, 5(6), 547-549.
- Alisoğlu V. (2005). Étude de la solubilité des phases en équilibre dans le système Na+,Mn2+/Br–,(H2PO2)–//H2O. Comptes Rendus Chimie, 8(9), 1684-1687.
- Alısoğlu V. ve Adıguzel V. (2008). Étude de la solubilité et des phases en équilibre dans le système quaternaire réciproque K+, Mn2+/Br−, (H2PO2)−//H2O. Comptes Rendus Chimie, 11(8), 938-941.
- AliŞoglu V. (1998). Étude de la solubilité et des phases en équilibre dans le système K2Br2/MnBr2/Mn(H2PO2)2/H2O. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry, 1(12), 781-785.
- Bhat G.A., Vishnoi P., Gupta S.K. and Murugavel R. (2015). Anhydrous manganese hypophosphite dense framework solid: Synthesis, structure and magnetic studies. Inorganic Chemistry Communications, 59, 84-87.
- Demi̇rci̇ S., Adıgüzel V. and Şahi̇n Ö. (2016). The Solubilities and Physicochemical Properties of NaH2PO2–NaCl–H2O, NaH2PO2–Zn(H2PO2)2–H2O, and NaCl–Zn(H2PO2)2–H2O Ternary Systems and in NaH2PO2–NaCl–Zn(H2PO2)2–H2O Quaternary System at 298.15 K. Journal of Chemical & Engineering Data, 61(7), 2292-2298.
- Jian R.K., Chen L., Zhao B., Yan Y.W., Li X.F. and Wang Y.Z. (2014). Acrylonitrile–Butadiene–Styrene Terpolymer with Metal Hypophosphites: Flame Retardance and Mechanism Research. Industrial & Engineering Chemistry Research, 53(6), 2299-2307.
- Kul A., Erge H. ve MEYDAN, İ. (2014). NaCl–BaCl2–H2O Üçlü Su–Tuz Sisteminin İzotermik Yöntemle Çözünürlüğünün ve Faz Dengelerinin Araştırılması. Yuzuncu Yil University Journal of the Institute of Natural and Applied Sciences, 19(1-2), 62-69.
- Mastai Y., Advances in crystallization processes, (BoD–Books on Demand, 2012)
- Noisong P. and Danvirutai C. (2010). A new synthetic route, characterization and vibrational studies of manganese hypophosphite monohydrate at ambient temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77(4), 890-894.
- Noisong P., Danvirutai C., Srithanratana T. and Boonchom B. (2008). Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sciences, 10(11), 1598-1604.
- Suekkhayad A., Noisong P. and Danvirutai C. (2017). Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2·H2O precursor. Journal of Thermal Analysis and Calorimetry, 129(1), 123-134.
- Van Wazer J. R., Phosphorus and Its Compounds [by]John R.Van Wazer, (Interscience, 1958)
- Wu W., Lv S., Liu X., Qu H., Zhang H. and Xu J. (2014). Using TG–FTIR and TG–MS to study thermal degradation of metal hypophosphites. Journal of Thermal Analysis and Calorimetry, 118(3), 1569-1575.
- Yang W., Yang W.J., Tawiah B., Zhang Y., Wang L.L., Zhu S.E., Chen T.B.Y., Yuen A.C.Y., Yu B., Liu Y.F., Si J.Y., Hu E.Z., Lu H.D., Hu K.H., Chan Q.N. and Yeoh G. H. (2018). Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid). Composites Science and Technology, 164, 44-50.
- Zeng Y., Yi J., Wang H., Zhou G. and Liu S. (2005). Theoretical study of H2PO2− adsorption on Ni(111) and Cu(111) surfaces. Journal of Molecular Structure: THEOCHEM, 724(1), 81-86.