Research Article
BibTex RIS Cite

Lazer Tarama Hızının Lazer Sinterleme ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi

Year 2020, , 227 - 232, 02.10.2020
https://doi.org/10.30934/kusbed.636713

Abstract

Amaç: Bu çalışmanın amacı; farklı tarama hızlarında lazer sinterleme ile üretilen kobalt-krom (Co-Cr) metal altyapıların porselen bağlantılarının değerlendirilmesidir.
Yöntem: Uluslararası Standartlar Teşkilatı (ISO) 9693-1 standardında belirtilen ölçütler doğrultusunda 3 farklı Co-Cr metal altyapı grubu (n=10) üretilmiştir. Grup C, geleneksel döküm yöntemi ile; grup LS3, 3 m/sn tarama hızında DMLE yöntemi ile; grup LS6, 6m/sn tarama hızında DMLE yöntemi ile üretilmiştir. Her gruptan birer metal altyapı yüzey morfolojilerinin değerlendirilmesi amacıyla taramalı elektron mikroskobu (SEM) altında incelenmiştir. SEM analizi sonrasında ISO 9693-1 doğrultusunda tüm örneklerin porselen fırınlamaları gerçekleştirilmiştir. Fırınlamalar tamamlandıktan sonra tüm öneklere 3 nokta bükme testi uygulanmıştır. Elde edilen veriler istatistiksel olarak 0,05 anlamlılık düzeyinde değerlendirilmiştir.
Bulgular: En düşük porselen bağlantı dayanımı değerleri grup LS6’dan elde edilmesine rağmen bu farklılık istatistiksel olarak anlamlı bulunmadı (p>0,05).
Sonuç: Lazer tarama hızının lazer sinterleme ile üretilen metal altyapıların porselen bağlantı dayanımını etkilemediği görüldü.

References

  • Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont. 2010;23(6):493-502.
  • Park JK, Kim HY, Kim WC, Kim JH. Evaluation of the fit of metal ceramic restorations fabricated with a pre-sintered soft alloy. J Prosthet Dent. 2016;116(6):909-15. doi: 10.1016/j.prosdent.2016.03.024
  • Xiang N, Xin XZ, Chen J, Wei B. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J Dent. 2012;40(6):453-7. doi: 10.1016/j.jdent.2012.02.006
  • Ozcan M. Fracture reasons in ceramic-fused-to-metal restorations. J Oral Rehabil. 2003;30(3):265-9. doi: 10.1046/j.1365-2842.2003.01038.x
  • Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119(3):481-7. doi: 10.1016/j.prosdent.2017.04.007
  • International Organization for Standardization. ISO 4049. Dentistry – Polymer-based restorative materials. Geneva: International Organization for Standardization; 2009. Available at: ISO Store Order: OP-269078 (Date: 2018-02-17). https://www.iso.org/standard/42898.html.
  • Joias RM, Tango RN, Junho de Araujo JE, et al. Shear bond strength of a ceramic to Co-Cr alloys. J Prosthet Dent. 2008;99(1):54-9. doi: 10.1016/S0022-3913(08)60009-8
  • Lombardo GH, Nishioka RS, Souza RO, et al. Influence of surface treatment on the shear bond strength of ceramics fused to cobalt-chromium. J Prosthodont. 2010;19(2):103-11. doi: 10.1111/j.1532-849X.2009.00546.x
  • Wang H, Feng Q, Li N, Xu S. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques. J Prosthet Dent. 2016;116(6):916-23. doi: 10.1016/j.prosdent.2016.06.002
  • Korkmaz T, Asar V. Comparative evaluation of bond strength of various metal–ceramic restorations. Mater Des. 2009;30(3):445-51. doi: 10.1016/j.matdes.2008.06.002
  • Castillo-Oyague R, Osorio R, Osorio E, Sanchez-Aguilera F, Toledano M. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks. Microsc Res Tech. 2012;75(9):1206-12. doi: 10.1002/jemt.22050
  • Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent. 2018;120(4):617-23. doi: 10.1016/j.prosdent.2017.11.015
  • Önöral Ö, Ulusoy M, Seker E, Etikan İ. Influence of repeated firings on marginal, axial, axio-occlusal, and occlusal fit of metal-ceramic restorations fabricated with different techniques. J Prosthet Dent. 2018;120(3):415-20. doi: 10.1016/j.prosdent.2017.11.022
  • Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008;24(10):1400-4. doi: 10.1016/j.dental.2008.03.001
  • Roberts HW, Berzins DW, Moore BK, Charlton DG. Metal-ceramic alloys in dentistry: a review. J Prosthodont. 2009;18(2):188-94. doi: 10.1111/j.1532-849X.2008.00377.x
  • Serra-Prat J, Cano-Batalla J, Cabratosa-Termes J, Figueras-Alvarez O. Adhesion of dental porcelain to cast, milled, and laser-sintered cobalt-chromium alloys: shear bond strength and sensitivity to thermocycling. J Prosthet Dent. 2014;112(3):600-5. doi: 10.1016/j.prosdent.2014.01.004
  • Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont. 2012;21(8):641-4. doi: 10.1111/j.1532-849X.2012.00888.x
  • Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289-96. doi: 10.14219/jada.archive.2006.0389
  • van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3-12. doi: 10.1016/j.dental.2011.10.014
  • Kim EH, Lee DH, Kwon SM, Kwon TY. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent. 2017;117(3):393-9. doi: 10.1016/j.prosdent.2016.08.002
  • Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf. 2006;46(12-13):1459-68. doi: 10.1016/j.ijmachtools.2005.09.005
  • Gu D, Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des. 2009;3(9)0:2903-10. doi: 10.1016/j.matdes.2009.01.013
  • Lu Y, Gan Y, Lin J, Guo S, Wu S, Lin J. Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM. Rapid Prototyp J. 2017;23(1):28-33. doi: 10.1108/RPJ-07-2015-0085
  • Senthilkumaran K, Pandey PM, Rao P. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des. 2009;30(8):2946-54. doi: 10.1016/j.matdes.2009.01.009
  • Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196-203. doi: 10.1108/13552540710776142
  • Wang RJ, Wang L, Zhao L, Liu Z. Influence of process parameters on part shrinkage in SLS. Int J Adv Manuf Technol. 2007;33(5-6):498-504. doi: 10.1007/s00170-006-0490-x
  • Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: Materials and applications. Appl Phys Rev. 2015;2(4):041101. doi: 10.1063/1.4935926
  • Zhang B, Liao H, Coddet C. Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture. Mater Des. 2012;34:753-8. doi: 10.1016/j.matdes.2011.06.061
  • Zhang L, Klemm D, Eckert J, Hao Y, Sercombe T. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia. 2011;65(1):21-4. Doi: 10.1016/j.scriptamat.2011.03.024
  • Della Bona A, Van Noort R. Shear vs. tensile bond strength of resin composite bonded to ceramic. J Dent Res. 1995;74(9):1591-6. doi: 10.1177/00220345950740091401
  • Papazoglou E, Brantley WA. Porcelain adherence vs force to failure for palladium–gallium alloys: a critique of metal–ceramic bond testing. Dent Mater. 1998;14(2):112-9. doi: 10.1016/S0109-5641(98)00017-7
  • Sadeq A, Cai Z, Woody RD, Miller AW. Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthet Dent. 2003;90(1):10-7. doi: 10.1016/S0022-3913(03)00263-4
  • Lenz J, Schwarz S, Schwickerath H, Sperner F, Schäfer A. Bond strength of metal–ceramic systems in three‐point flexure bond test. J Appl Biomater. 1995;6(1):55-64. doi: 10.1002/jab.770060108
  • Kaleli N, Ural Ç, Küçükekenci AS. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J Prosthet Dent. 2019;122:76-81. doi: 10.1016/j.prosdent.2018.12.016
  • O’Brien WJ. Dental materials and their selection. 4. Baskı. Hanover Park: Quintessence Publishing; 2008.
  • Kaleli N, Saraç D. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J Prosthet Dent. 2017;118:76-82. doi: 10.1016/j.prosdent.2016.12.002

Effect of Laser Scan Speed on the Porcelain Bond Strength of Laser-Sintered Metal Frameworks

Year 2020, , 227 - 232, 02.10.2020
https://doi.org/10.30934/kusbed.636713

Abstract

Objective: The aim of this in vitro study was to evaluate the porcelain bond strength of laser-sintered cobalt–chromium (Co-Cr) metal frameworks sintered at different laser scanning speeds.
Methods: Three different Co-Cr metal framework groups (n=10) were fabricated in accordance with the criteria specified in the International Organization for Standardization (ISO) 9693-1: group C, fabricated by conventional casting technique; group LS3, fabricated by DMLM at laser scan speed of 3 m/s; group LS6, fabricated by DMLM at laser scan speed of 6 m/s. One metal framework from each group was examined under scanning electron microscopy (SEM) to evaluate surface morphology. Thereafter, porcelain firings were conducted according to ISO 9693-1. Next, all specimens were subjected to 3-point bending test. The obtained data were statistically evaluated at 0.05 significance level.
Results: The lowest porcelain bond strength values were obtained from group LS6; however, this was not found statistically different (p>0.05).
Conclusion: It was revealed that laser scanning speed has no effect on porcelain bond strength in laser-sintered metal frameworks.

References

  • Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont. 2010;23(6):493-502.
  • Park JK, Kim HY, Kim WC, Kim JH. Evaluation of the fit of metal ceramic restorations fabricated with a pre-sintered soft alloy. J Prosthet Dent. 2016;116(6):909-15. doi: 10.1016/j.prosdent.2016.03.024
  • Xiang N, Xin XZ, Chen J, Wei B. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J Dent. 2012;40(6):453-7. doi: 10.1016/j.jdent.2012.02.006
  • Ozcan M. Fracture reasons in ceramic-fused-to-metal restorations. J Oral Rehabil. 2003;30(3):265-9. doi: 10.1046/j.1365-2842.2003.01038.x
  • Ekren O, Ozkomur A, Ucar Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J Prosthet Dent. 2018;119(3):481-7. doi: 10.1016/j.prosdent.2017.04.007
  • International Organization for Standardization. ISO 4049. Dentistry – Polymer-based restorative materials. Geneva: International Organization for Standardization; 2009. Available at: ISO Store Order: OP-269078 (Date: 2018-02-17). https://www.iso.org/standard/42898.html.
  • Joias RM, Tango RN, Junho de Araujo JE, et al. Shear bond strength of a ceramic to Co-Cr alloys. J Prosthet Dent. 2008;99(1):54-9. doi: 10.1016/S0022-3913(08)60009-8
  • Lombardo GH, Nishioka RS, Souza RO, et al. Influence of surface treatment on the shear bond strength of ceramics fused to cobalt-chromium. J Prosthodont. 2010;19(2):103-11. doi: 10.1111/j.1532-849X.2009.00546.x
  • Wang H, Feng Q, Li N, Xu S. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques. J Prosthet Dent. 2016;116(6):916-23. doi: 10.1016/j.prosdent.2016.06.002
  • Korkmaz T, Asar V. Comparative evaluation of bond strength of various metal–ceramic restorations. Mater Des. 2009;30(3):445-51. doi: 10.1016/j.matdes.2008.06.002
  • Castillo-Oyague R, Osorio R, Osorio E, Sanchez-Aguilera F, Toledano M. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks. Microsc Res Tech. 2012;75(9):1206-12. doi: 10.1002/jemt.22050
  • Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent. 2018;120(4):617-23. doi: 10.1016/j.prosdent.2017.11.015
  • Önöral Ö, Ulusoy M, Seker E, Etikan İ. Influence of repeated firings on marginal, axial, axio-occlusal, and occlusal fit of metal-ceramic restorations fabricated with different techniques. J Prosthet Dent. 2018;120(3):415-20. doi: 10.1016/j.prosdent.2017.11.022
  • Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008;24(10):1400-4. doi: 10.1016/j.dental.2008.03.001
  • Roberts HW, Berzins DW, Moore BK, Charlton DG. Metal-ceramic alloys in dentistry: a review. J Prosthodont. 2009;18(2):188-94. doi: 10.1111/j.1532-849X.2008.00377.x
  • Serra-Prat J, Cano-Batalla J, Cabratosa-Termes J, Figueras-Alvarez O. Adhesion of dental porcelain to cast, milled, and laser-sintered cobalt-chromium alloys: shear bond strength and sensitivity to thermocycling. J Prosthet Dent. 2014;112(3):600-5. doi: 10.1016/j.prosdent.2014.01.004
  • Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont. 2012;21(8):641-4. doi: 10.1111/j.1532-849X.2012.00888.x
  • Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289-96. doi: 10.14219/jada.archive.2006.0389
  • van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3-12. doi: 10.1016/j.dental.2011.10.014
  • Kim EH, Lee DH, Kwon SM, Kwon TY. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J Prosthet Dent. 2017;117(3):393-9. doi: 10.1016/j.prosdent.2016.08.002
  • Santos EC, Shiomi M, Osakada K, Laoui T. Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf. 2006;46(12-13):1459-68. doi: 10.1016/j.ijmachtools.2005.09.005
  • Gu D, Shen Y. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater Des. 2009;3(9)0:2903-10. doi: 10.1016/j.matdes.2009.01.013
  • Lu Y, Gan Y, Lin J, Guo S, Wu S, Lin J. Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM. Rapid Prototyp J. 2017;23(1):28-33. doi: 10.1108/RPJ-07-2015-0085
  • Senthilkumaran K, Pandey PM, Rao P. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des. 2009;30(8):2946-54. doi: 10.1016/j.matdes.2009.01.009
  • Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196-203. doi: 10.1108/13552540710776142
  • Wang RJ, Wang L, Zhao L, Liu Z. Influence of process parameters on part shrinkage in SLS. Int J Adv Manuf Technol. 2007;33(5-6):498-504. doi: 10.1007/s00170-006-0490-x
  • Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: Materials and applications. Appl Phys Rev. 2015;2(4):041101. doi: 10.1063/1.4935926
  • Zhang B, Liao H, Coddet C. Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture. Mater Des. 2012;34:753-8. doi: 10.1016/j.matdes.2011.06.061
  • Zhang L, Klemm D, Eckert J, Hao Y, Sercombe T. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia. 2011;65(1):21-4. Doi: 10.1016/j.scriptamat.2011.03.024
  • Della Bona A, Van Noort R. Shear vs. tensile bond strength of resin composite bonded to ceramic. J Dent Res. 1995;74(9):1591-6. doi: 10.1177/00220345950740091401
  • Papazoglou E, Brantley WA. Porcelain adherence vs force to failure for palladium–gallium alloys: a critique of metal–ceramic bond testing. Dent Mater. 1998;14(2):112-9. doi: 10.1016/S0109-5641(98)00017-7
  • Sadeq A, Cai Z, Woody RD, Miller AW. Effects of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthet Dent. 2003;90(1):10-7. doi: 10.1016/S0022-3913(03)00263-4
  • Lenz J, Schwarz S, Schwickerath H, Sperner F, Schäfer A. Bond strength of metal–ceramic systems in three‐point flexure bond test. J Appl Biomater. 1995;6(1):55-64. doi: 10.1002/jab.770060108
  • Kaleli N, Ural Ç, Küçükekenci AS. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J Prosthet Dent. 2019;122:76-81. doi: 10.1016/j.prosdent.2018.12.016
  • O’Brien WJ. Dental materials and their selection. 4. Baskı. Hanover Park: Quintessence Publishing; 2008.
  • Kaleli N, Saraç D. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods. J Prosthet Dent. 2017;118:76-82. doi: 10.1016/j.prosdent.2016.12.002
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Original Article | Dentistry
Authors

Necati Kaleli 0000-0001-9176-5356

Çağrı Ural 0000-0001-5613-2027

Ahmet Serkan Küçükekenci 0000-0001-6628-0939

Publication Date October 2, 2020
Submission Date October 23, 2019
Acceptance Date September 7, 2020
Published in Issue Year 2020

Cite

APA Kaleli, N., Ural, Ç., & Küçükekenci, A. S. (2020). Lazer Tarama Hızının Lazer Sinterleme ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 6(3), 227-232. https://doi.org/10.30934/kusbed.636713
AMA Kaleli N, Ural Ç, Küçükekenci AS. Lazer Tarama Hızının Lazer Sinterleme ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi. KOU Sag Bil Derg. October 2020;6(3):227-232. doi:10.30934/kusbed.636713
Chicago Kaleli, Necati, Çağrı Ural, and Ahmet Serkan Küçükekenci. “Lazer Tarama Hızının Lazer Sinterleme Ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 6, no. 3 (October 2020): 227-32. https://doi.org/10.30934/kusbed.636713.
EndNote Kaleli N, Ural Ç, Küçükekenci AS (October 1, 2020) Lazer Tarama Hızının Lazer Sinterleme ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 6 3 227–232.
IEEE N. Kaleli, Ç. Ural, and A. S. Küçükekenci, “Lazer Tarama Hızının Lazer Sinterleme ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi”, KOU Sag Bil Derg, vol. 6, no. 3, pp. 227–232, 2020, doi: 10.30934/kusbed.636713.
ISNAD Kaleli, Necati et al. “Lazer Tarama Hızının Lazer Sinterleme Ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 6/3 (October 2020), 227-232. https://doi.org/10.30934/kusbed.636713.
JAMA Kaleli N, Ural Ç, Küçükekenci AS. Lazer Tarama Hızının Lazer Sinterleme ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi. KOU Sag Bil Derg. 2020;6:227–232.
MLA Kaleli, Necati et al. “Lazer Tarama Hızının Lazer Sinterleme Ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, vol. 6, no. 3, 2020, pp. 227-32, doi:10.30934/kusbed.636713.
Vancouver Kaleli N, Ural Ç, Küçükekenci AS. Lazer Tarama Hızının Lazer Sinterleme ile Üretilen Metal Altyapıların Porselen Bağlantısı Üzerindeki Etkisi. KOU Sag Bil Derg. 2020;6(3):227-32.