Research Article
BibTex RIS Cite

Comparison of Bone Collection Capacity of Two Different Dental Implant Systems

Year 2025, Volume: 27 Issue: 2, 203 - 210, 25.08.2025
https://doi.org/10.24938/kutfd.1707235

Abstract

Objective: The aim of this in vitro study was to compare the capacity of surgical drills from Megagen and Nucleoss implant systems to collect autologous bone particles generated during osteotomy and to evaluate the effects of different drill diameters on this capacity.
Material and Methods: A total of 40 bovine bones were used in the study. The drill diameters used in the Megagen Implant system were 3.3 mm, 3.6 mm, 4.2 mm and 4.8 mm, while the drill diameters used in the Nucleoss Implant system were 3.0 mm, 3.5 mm, 4.1 mm and 4.8 mm. 40 osteotomies were created from each system for each diameter. After osteotomy, bone particles accumulated in the grooves of the burs were collected and stored in Eppendorf tubes. The data obtained were statistically evaluated with SPSS program.
Results: The amount of autologous bone obtained with the drills of the Nucleoss system was statistically significantly higher compared to the Megagen system. In both systems, an increase in the amount of bone collected was observed as the bur diameter increased. The highest bone collection amount was found in 4.8 mm burs.
Conclusion: The design and geometry of the bur directly affect the amount of autologous bone obtained during osteotomy. The Nucleoss bur system may provide a clinical advantage in osseointegration with its higher bone particle collection capacity. However, further studies are required for clinical confirmation of the findings.

References

  • Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25.
  • Chackartchi T, Barkana I, Baranes D, et al. Influence of drill design on primary stability and bone healing: A comparative in vivo study. Clin Oral Implants Res. 2022;33(6):587-595.
  • Alghamdi H, Jansen JA. The development and future of dental implants: From osseointegration to functional integration. Clin Oral Implants Res. 2020;31(6):523-535.
  • Spin-Neto R, Stavropoulos A, Coletti FL, Faeda RS, Pereira LAVD, Marcantonio E Jr. Graft incorporation and osteogenesis in sinus floor augmentation with autografts: A systematic review. Int J Oral Maxillofac Implants. 2021;36(2):e35-e46.
  • Gehrke SA, Aramburú Júnior JS, Pérez-Díaz L, et al. Comparative study of the drilling protocols and the influence of the drill design on the dental implant osseointegration: A histomorphometric study in rabbits. Clin Oral Investig. 2021;25(2):633-640.
  • Duddeck D, Maghaireh H, Faber FJ, Neugebauer J. SEM surface analyses of 120 sterile-packed implants. Clin Implant Dent Relat Res. 2014;16(6), 817-826
  • Albrektsson T, Johansson C. Bone harvesting techniques and their impact on bone viability: A systematic review. Clin Implant Dent Relat Res. 2018;20(4):e1-e10.
  • Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech. 2012;27(4):313-325.
  • Misch CE, Qu Z, Bidez MW. Particle size and osteoblast attachment: Implications for bone regeneration. Int J Oral Maxillofac Implants. 2024;33(5):e1-e8.
  • Stacchi C, Lombardi T, Bernardello F, Berton F, Visintini E, Di Lenarda R. Influence of implant drill characteristics on heat generation during osteotomy preparation: A systematic review of the literature. Int J Oral Maxillofac Implants. 2021;36(1):27-36.
  • Zaffe D, Bertoldi C, Consolo, et al. Comparison of the microstructure of human and bovine bone for dental implant studies. J Dent Res. 2000;79(2):869-87512.
  • Bernabeu-Mira JC, Soto-Peñaloza D, Peñarrocha-Diago M, Camacho-Alonso F, Rivas-Ballester R, Peñarrocha- Oltra D. Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: A systematic review. Clin Oral Investig. 2021;25(7):4251-4267.
  • Galli C, Macaluso GM, Passeri LA. Osteopromotive membranes enhance bone regeneration around dental implants: A systematic review and meta-analysis. Clin Oral Implants Res. 2020;31(5):442-458.
  • Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(Suppl 2):S96-S101.
  • Gehrke SA, Taschieri S, Del Fabbro M. On the mechanical properties of bone collected during implant site preparation: A comparative study. Clin Implant Dent Relat Res. 2020;22(5):553-561.
  • Simion M, Scarano A, Gionso L, Piattelli A. Effect of different implant surfaces on peri-implant bone response: A histologic study in humans. Int J Oral Maxillofac Implants. 2002;17(3):349-356.
  • Scarano A, Lorusso F, Staiti G, Sinjari B, Tampieri P, Mortellaro C. Influence of implant drill design on heat generation during osteotomy: An in vitro study. Int J Environ Res Public Health. 2021;18(3):1246.
  • Stübinger S, Mosch I, Robotti P, Klein K, von Rechenberg B, Zeilhofer HF. Temperature evolution in the implant bed during drilling with stainless steel and zirconia drills. Clin Oral Implants Res. 2013;24(8):910-917.
  • Jimbo R, Janal MN, Marin C, et al. The effect of implant cutting design on osseointegration and implant stability in the early healing period: An experimental study in dogs. Int J Oral Maxillofac Surg. 2014;43(7):883-888.
  • Gehrke SA, de Aza PN, Pérez-Díaz L, et al. Influence of drilling speed on the healing of the bone around dental implants: a histological and immunohistochemical study in rabbits. Clin Oral Investig. 2021;25(6):3927-3935.
  • Stocchero M, Toia M, Tumedei M, et al. Effect of implant drill diameter on heat generation and osteotomy healing: A systematic review. Clin Implant Dent Relat Res. 2020;22(6):748-757.
  • Gehrke SA, Shibli JA, Aramburú Júnior JS, et al. Effects of different drilling protocols on bone healing and the osseointegration of dental implants: A preclinical study. Clin Oral Investig. 2021;25(10):6021-6030.
  • Eriksson AR, Albrektsson T. The effect of heat on bone regeneration: An experimental study in the rabbit. J Prosthet Dent. 1983;50(1):101-107.
  • Ganeles J, St. George R, Rees T, et al. The effect of drilling speed on heat production and bone viability during implant site preparation. J Oral Maxillofac Surg. 2016;74(9):1816- 1823.
  • Albrektsson T, Johansson C, Nannmark U, et al. The role of irrigation and cooling in bone regeneration during dental implant surgery: An in vitro study. Clin Implant Dent Relat Res. 2018;20(4):529-536.
  • Martin RB, Burr DB, Sharkey NA, et al. The mechanical properties of bone. Bone. 1998;23(5):315-327.
  • Bassetti M, Chen Z, Ricciardi C, et al. Bone regeneration in different regions of the jaw and its relationship with bone density: A comparative study of maxilla and mandible in vivo. Clin Oral Implants Res. 2016;27(10):1230-1237.
  • Araujo MG, Wennström JL, Lindhe J, et al. Effects of age and systemic diseases on bone regeneration: Implications for bone grafting in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2019;77(12):2523-2532.
  • Khan SN, Cammisa FP Jr, Sandhu HS, et al. The effect of bone particle size on osteogenesis and bone regeneration in vitro. Bone. 2008;42(2):307-314.
  • Guerin T, Komaki H, Tanaka Y, et al. Bone particle size and its impact on osteoblast differentiation and bone healing. J Biomed Mater Res B Appl Biomater. 2014;102(5):1077-1084.
  • Hernandez A, Zhang Y, Smith DL, et al. The impact of necrotic bone particles on the inflammatory response and bone healing. Bone. 2017;103:59-67.
  • Chung M, Lee J, Kim YH, et al. Effect of bone mineralization on resorption rate and mechanical stability of bone particles during graft healing. J Biomed Mater Res A. 2020;108(10):2115-2123.
  • Kraus A, Schenk RK, Buser D, et al. The role of growth factors in bone healing and their impact on the quality of bone grafts. Bone. 2019;124:158-166.
  • Zhao Z, Wang Y, Li L, et al. The limitations of in vitro models in studying the effects of growth factors and immune response on bone healing. J Cell Biochem. 2020;121(4):2832-2841.
  • Silva L, Pereira M, Costa R, et al. In vivo analysis of bone healing: Histological, histochemical and immunohistochemical methods for assessing graft effectiveness. Bone. 2021;140:115593.
  • Chung J, Lee SY, Kim JY, et al. Comparison of laser, ultrasonic, and piezoelectric surgery on bone healing and cell viability. J Oral Maxillofac Surg. 2021;79(6):1224- 1233.
  • Dai L, Zhang X, Yu F, et al. The effects of bone density, cortical/trabecular bone ratio, and blood supply on the mechanical properties of bone grafts. J Orthop Res. 2019;37(6):1295-1304

İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI

Year 2025, Volume: 27 Issue: 2, 203 - 210, 25.08.2025
https://doi.org/10.24938/kutfd.1707235

Abstract

Amaç: Bu in vitro çalışmanın amacı, Megagen ve Nucleoss implant sistemlerine ait cerrahi frezlerin osteotomi sırasında oluşturduğu otolog kemik partiküllerini toplama kapasitelerini karşılaştırmak ve farklı frez çaplarının bu kapasite üzerindeki etkilerini değerlendirmektir.
Gereç ve Yöntemler: Çalışmada toplam 40 adet sığır kemiği kullanılmıştır. Megagen İmplant sisteminde kullanılan frez çapları 3,3 mm, 3,6 mm, 4,2 mm ve 4,8 mm iken Nucleoss İmplant sisteminde kullanılan frez çapları 3,0 mm, 3,5 mm, 4,1 mm ve 4,8 mm şeklindedir, her çap için her sistemden 40 adet osteotomi oluşturulmuştur. Osteotomi sonrasında frezlerin oluklarında biriken kemik partikülleri toplanarak ependorf tüplerde saklanmıştır. Elde edilen veriler istatistiksel olarak SPSS programı ile değerlendirilmiştir.
Bulgular: Nucleoss sistemine ait frezlerle elde edilen otolog kemik miktarı, Megagen sistemine kıyasla istatistiksel olarak anlamlı düzeyde daha fazladır. Her iki sistemde de frez çapı arttıkça toplanan kemik miktarında artış gözlemlenmiştir. En yüksek kemik toplama miktarı 4,8 mm frezlerde saptanmıştır.
Sonuç: Frez tasarımı ve geometrisi, osteotomi sırasında elde edilen otolog kemik miktarını doğrudan etkilemektedir. Nucleoss frez sistemi, daha yüksek kemik partikülü toplama kapasitesi ile osseointegrasyonda klinik avantaj sağlayabilir. Ancak bulguların klinik doğrulanması için ileri çalışmalar gereklidir.

References

  • Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25.
  • Chackartchi T, Barkana I, Baranes D, et al. Influence of drill design on primary stability and bone healing: A comparative in vivo study. Clin Oral Implants Res. 2022;33(6):587-595.
  • Alghamdi H, Jansen JA. The development and future of dental implants: From osseointegration to functional integration. Clin Oral Implants Res. 2020;31(6):523-535.
  • Spin-Neto R, Stavropoulos A, Coletti FL, Faeda RS, Pereira LAVD, Marcantonio E Jr. Graft incorporation and osteogenesis in sinus floor augmentation with autografts: A systematic review. Int J Oral Maxillofac Implants. 2021;36(2):e35-e46.
  • Gehrke SA, Aramburú Júnior JS, Pérez-Díaz L, et al. Comparative study of the drilling protocols and the influence of the drill design on the dental implant osseointegration: A histomorphometric study in rabbits. Clin Oral Investig. 2021;25(2):633-640.
  • Duddeck D, Maghaireh H, Faber FJ, Neugebauer J. SEM surface analyses of 120 sterile-packed implants. Clin Implant Dent Relat Res. 2014;16(6), 817-826
  • Albrektsson T, Johansson C. Bone harvesting techniques and their impact on bone viability: A systematic review. Clin Implant Dent Relat Res. 2018;20(4):e1-e10.
  • Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech. 2012;27(4):313-325.
  • Misch CE, Qu Z, Bidez MW. Particle size and osteoblast attachment: Implications for bone regeneration. Int J Oral Maxillofac Implants. 2024;33(5):e1-e8.
  • Stacchi C, Lombardi T, Bernardello F, Berton F, Visintini E, Di Lenarda R. Influence of implant drill characteristics on heat generation during osteotomy preparation: A systematic review of the literature. Int J Oral Maxillofac Implants. 2021;36(1):27-36.
  • Zaffe D, Bertoldi C, Consolo, et al. Comparison of the microstructure of human and bovine bone for dental implant studies. J Dent Res. 2000;79(2):869-87512.
  • Bernabeu-Mira JC, Soto-Peñaloza D, Peñarrocha-Diago M, Camacho-Alonso F, Rivas-Ballester R, Peñarrocha- Oltra D. Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: A systematic review. Clin Oral Investig. 2021;25(7):4251-4267.
  • Galli C, Macaluso GM, Passeri LA. Osteopromotive membranes enhance bone regeneration around dental implants: A systematic review and meta-analysis. Clin Oral Implants Res. 2020;31(5):442-458.
  • Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(Suppl 2):S96-S101.
  • Gehrke SA, Taschieri S, Del Fabbro M. On the mechanical properties of bone collected during implant site preparation: A comparative study. Clin Implant Dent Relat Res. 2020;22(5):553-561.
  • Simion M, Scarano A, Gionso L, Piattelli A. Effect of different implant surfaces on peri-implant bone response: A histologic study in humans. Int J Oral Maxillofac Implants. 2002;17(3):349-356.
  • Scarano A, Lorusso F, Staiti G, Sinjari B, Tampieri P, Mortellaro C. Influence of implant drill design on heat generation during osteotomy: An in vitro study. Int J Environ Res Public Health. 2021;18(3):1246.
  • Stübinger S, Mosch I, Robotti P, Klein K, von Rechenberg B, Zeilhofer HF. Temperature evolution in the implant bed during drilling with stainless steel and zirconia drills. Clin Oral Implants Res. 2013;24(8):910-917.
  • Jimbo R, Janal MN, Marin C, et al. The effect of implant cutting design on osseointegration and implant stability in the early healing period: An experimental study in dogs. Int J Oral Maxillofac Surg. 2014;43(7):883-888.
  • Gehrke SA, de Aza PN, Pérez-Díaz L, et al. Influence of drilling speed on the healing of the bone around dental implants: a histological and immunohistochemical study in rabbits. Clin Oral Investig. 2021;25(6):3927-3935.
  • Stocchero M, Toia M, Tumedei M, et al. Effect of implant drill diameter on heat generation and osteotomy healing: A systematic review. Clin Implant Dent Relat Res. 2020;22(6):748-757.
  • Gehrke SA, Shibli JA, Aramburú Júnior JS, et al. Effects of different drilling protocols on bone healing and the osseointegration of dental implants: A preclinical study. Clin Oral Investig. 2021;25(10):6021-6030.
  • Eriksson AR, Albrektsson T. The effect of heat on bone regeneration: An experimental study in the rabbit. J Prosthet Dent. 1983;50(1):101-107.
  • Ganeles J, St. George R, Rees T, et al. The effect of drilling speed on heat production and bone viability during implant site preparation. J Oral Maxillofac Surg. 2016;74(9):1816- 1823.
  • Albrektsson T, Johansson C, Nannmark U, et al. The role of irrigation and cooling in bone regeneration during dental implant surgery: An in vitro study. Clin Implant Dent Relat Res. 2018;20(4):529-536.
  • Martin RB, Burr DB, Sharkey NA, et al. The mechanical properties of bone. Bone. 1998;23(5):315-327.
  • Bassetti M, Chen Z, Ricciardi C, et al. Bone regeneration in different regions of the jaw and its relationship with bone density: A comparative study of maxilla and mandible in vivo. Clin Oral Implants Res. 2016;27(10):1230-1237.
  • Araujo MG, Wennström JL, Lindhe J, et al. Effects of age and systemic diseases on bone regeneration: Implications for bone grafting in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2019;77(12):2523-2532.
  • Khan SN, Cammisa FP Jr, Sandhu HS, et al. The effect of bone particle size on osteogenesis and bone regeneration in vitro. Bone. 2008;42(2):307-314.
  • Guerin T, Komaki H, Tanaka Y, et al. Bone particle size and its impact on osteoblast differentiation and bone healing. J Biomed Mater Res B Appl Biomater. 2014;102(5):1077-1084.
  • Hernandez A, Zhang Y, Smith DL, et al. The impact of necrotic bone particles on the inflammatory response and bone healing. Bone. 2017;103:59-67.
  • Chung M, Lee J, Kim YH, et al. Effect of bone mineralization on resorption rate and mechanical stability of bone particles during graft healing. J Biomed Mater Res A. 2020;108(10):2115-2123.
  • Kraus A, Schenk RK, Buser D, et al. The role of growth factors in bone healing and their impact on the quality of bone grafts. Bone. 2019;124:158-166.
  • Zhao Z, Wang Y, Li L, et al. The limitations of in vitro models in studying the effects of growth factors and immune response on bone healing. J Cell Biochem. 2020;121(4):2832-2841.
  • Silva L, Pereira M, Costa R, et al. In vivo analysis of bone healing: Histological, histochemical and immunohistochemical methods for assessing graft effectiveness. Bone. 2021;140:115593.
  • Chung J, Lee SY, Kim JY, et al. Comparison of laser, ultrasonic, and piezoelectric surgery on bone healing and cell viability. J Oral Maxillofac Surg. 2021;79(6):1224- 1233.
  • Dai L, Zhang X, Yu F, et al. The effects of bone density, cortical/trabecular bone ratio, and blood supply on the mechanical properties of bone grafts. J Orthop Res. 2019;37(6):1295-1304
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Health Services and Systems (Other)
Journal Section Özgün Araştırma
Authors

Kubilay Barış 0000-0002-3927-3861

Furkan Kızılağıl 0009-0006-9407-1433

Meltem Hendek 0000-0003-1518-4159

Ebru Olgun 0000-0001-7298-8589

Publication Date August 25, 2025
Submission Date May 27, 2025
Acceptance Date July 5, 2025
Published in Issue Year 2025 Volume: 27 Issue: 2

Cite

APA Barış, K., Kızılağıl, F., Hendek, M., Olgun, E. (2025). İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI. The Journal of Kırıkkale University Faculty of Medicine, 27(2), 203-210. https://doi.org/10.24938/kutfd.1707235
AMA Barış K, Kızılağıl F, Hendek M, Olgun E. İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI. Kırıkkale Uni Med J. August 2025;27(2):203-210. doi:10.24938/kutfd.1707235
Chicago Barış, Kubilay, Furkan Kızılağıl, Meltem Hendek, and Ebru Olgun. “İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI”. The Journal of Kırıkkale University Faculty of Medicine 27, no. 2 (August 2025): 203-10. https://doi.org/10.24938/kutfd.1707235.
EndNote Barış K, Kızılağıl F, Hendek M, Olgun E (August 1, 2025) İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI. The Journal of Kırıkkale University Faculty of Medicine 27 2 203–210.
IEEE K. Barış, F. Kızılağıl, M. Hendek, and E. Olgun, “İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI”, Kırıkkale Uni Med J, vol. 27, no. 2, pp. 203–210, 2025, doi: 10.24938/kutfd.1707235.
ISNAD Barış, Kubilay et al. “İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI”. The Journal of Kırıkkale University Faculty of Medicine 27/2 (August2025), 203-210. https://doi.org/10.24938/kutfd.1707235.
JAMA Barış K, Kızılağıl F, Hendek M, Olgun E. İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI. Kırıkkale Uni Med J. 2025;27:203–210.
MLA Barış, Kubilay et al. “İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI”. The Journal of Kırıkkale University Faculty of Medicine, vol. 27, no. 2, 2025, pp. 203-10, doi:10.24938/kutfd.1707235.
Vancouver Barış K, Kızılağıl F, Hendek M, Olgun E. İKİ FARKLI DENTAL İMPLANT SİSTEMİNİN KEMİK TOPLAMA KAPASİTESİNİN KARŞILAŞTIRILMASI. Kırıkkale Uni Med J. 2025;27(2):203-10.

This Journal is a Publication of Kırıkkale University Faculty of Medicine.