Research Article
BibTex RIS Cite

Exploring Apis mellifera L. Venom's Antioxidant Power in Various Solvents: Unveiling its In Vitro Potential

Year 2023, , 420 - 431, 30.09.2023
https://doi.org/10.30607/kvj.1343130

Abstract

Apis mellifera L. venom contains bioactive components with antioxidant properties. Diluted in various polar solvents, the venom is utilized for therapeutic purposes. This study aims to determine the in vitro antioxidant activities (AOA) of standard crude venom (SV) and venom from breeders (BV) by dissolving them in distilled water, saline, and PBS at concentrations of 1.95-500 µg.ml-1. Radical scavenging activity (DPPH) and metal chelating activity (MCA) assays were employed for AOA assessment. SV dissolved in distilled water exhibited higher RSA (73.26±11.24%) than BV (34.60±21.08%), with no difference between SV, ascorbic acid (AA), and Trolox RSA’s. BV's RSA was lower than AA (75.07±15.59%) and Trolox (84.02±1.63%). BV's MCA (30.31±24.06%) exceeded AA (8.93±16.08%). SV in saline showed higher RSA (63.83±9.73%) than BV (46.99±18.31%), lower than AA (71.63±4.14%) and Trolox (79.01±6.94%). MCAs of SV (85.42±4.65%) and BV (85.53±7.19%) surpassed Trolox (55.06±30.92%). No difference existed between RSA’s of SV (37.16±16.54%) and BV (38.47±17.24%) in PBS, both lower than AA (71.48±3.66%) and Trolox (72.87±6.05%). Optimal RSA and MCA were observed at different solvents and concentrations, indicating the use of 500 µg.ml-1 (1.95 µg.ml-1 BV for RSA) venom dissolved in saline for optimal AOA. PBS or distilled water usage resulted in decreased AOA.

Thanks

We would like to express our gratitude to Mr. Şevket Afyonlu, the beekeeper, for his valuable contribution in providing the honeybee specimens for this study.

References

  • Denk, B., & Fidan, A. F. (2021). Effects of honeybee (apis mellifera) venom on redox balance, biochemical andhematological profile in diabetic rats: A preliminary study. Turkish Journal of Veterinary & Animal Sciences, 45(2), 257-265.
  • Dontha, S. (2016). A review on antioxidant methods. Asian J. Pharm. Clin. Res, 9(2), 14-32. El Mehdi, I., Falcão, S. I., Boujraf, S., Mustapha, H., Campos, M. G., & Vilas-Boas, M. (2022). Analytical methods for honeybee venom characterization. Journal of Advanced Pharmaceutical Technology & Research, 13(3), 154.
  • Eze, O. B., Nwodo, O. F., & Ogugua, V. N. (2016). Therapeutic effect of honey bee venom. Proteins (enzymes), 1(2).
  • Frangieh, J., Salma, Y., Haddad, K., Mattei, C., Legros, C., Fajloun, Z., & El Obeid, D. (2019). First characterization of the venom from apis mellifera syriaca, a honeybee from the middle east region. Toxins, 11(4), 191.
  • Gulcin, İ., & Alwasel, S. H. (2022). Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes, 10(1), 132.
  • Gupta, R. K., & Stangaciu, S. (2014). Apitherapy: holistic healing through the honeybee and bee products in countries with poor healthcare system. In Beekeeping for poverty alleviation and livelihood security (pp. 413-446). Springer, Dordrecht.
  • Han, S. M., Lee, G. G., & Park, K. K. (2012). Acute dermal toxicity study of bee venom (Apis mellifera L.) in rats. Toxicological research, 28, 99-102.
  • Hwang, D. S., Kim, S. K., & Bae, H. (2015). Therapeutic effects of bee venom on immunological and neurological diseases. Toxins, 7(7), 2413-2421.
  • Lee, K. S., Kim, B. Y., Yoon, H. J., Choi, Y. S., & Jin, B. R. (2016). Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. Developmental & Comparative Immunology, 63, 27-35.
  • Martinello, M., & Mutinelli, F. (2021). Antioxidant activity in bee products: A review. Antioxidants, 10(1), 71.
  • Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380.
  • Pinto, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., ... & Rodrigues, F. (2021). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 334, 127521.
  • Sobral, F., Sampaio, A., Falcão, S., Queiroz, M. J. R., Calhelha, R. C., Vilas-Boas, M., & Ferreira, I. C. (2016). Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food and Chemical Toxicology, 94, 172-177.
  • Somwongin, S., Chantawannakul, P., & Chaiyana, W. (2018). Antioxidant activity and irritation property of venoms from Apis species. Toxicon, 145, 32-39.
  • Şenel, E., & Demir, E. (2018). Bibliometric analysis of apitherapy in complementary medicine literature between 1980 and 2016. Complementary therapies in clinical practice, 31, 47-52.
  • Zhang, S., Liu, Y., Ye, Y., Wang, X. R., Lin, L. T., Xiao, L. Y., ... & Liu, C. Z. (2018). Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon, 148, 64-73.

Apis mellifera L. Zehirinin Çeşitli Solventlerdeki Antioksidan Gücü: In Vitro Potansiyelin Ortaya Çıkarılması

Year 2023, , 420 - 431, 30.09.2023
https://doi.org/10.30607/kvj.1343130

Abstract

Apis mellifera L. zehiri, antioksidan özelliklere sahip biyoaktif bileşenler içermektedir. Çeşitli polar çözücülerde seyreltilen zehir, terapötik amaçlar için kullanılmaktadır. Bu çalışma, standart ham zehir (SV) ve üreticiden temin edilen zehir (BV) örneklerinin in vitro antioksidan aktivitelerini (AOA) belirlemeyi amaçlamaktadır. Bu amaçla örnekler, 1.95-500 µg.ml-1 konsantrasyon aralığında distile su, fizyolojik tuzlu su ve PBS içinde çözülmüştür. Antioksidan aktivitelerin değerlendirilmesi için serbest radikal giderme aktivitesi (DPPH) ve metal şelasyon aktivitesi (MCA) analizleri kullanılmıştır. SV, distile suda çözündüğünde BV'ye göre daha yüksek RSA (73.26±11.24%) sergilemiş, SV, askorbik asit (AA) ve Trolox RSA’ları arasında fark bulunmamıştır. BV'nin RSA'sı, AA (75.07±15.59%) ve Trolox (84.02±1.63%) RSA’larından düşük bulunmuştur. BV'nin MCA'sı (30.31±24.06%), AA (8.93±16.08%) değerini aşmıştır. SV, tuzlu su içinde çözüldüğünde BV'ye göre daha yüksek RSA (63.83±9.73%) sergilemiş, AA (71.63±4.14%) ve Trolox (79.01±6.94%) RSA'larından düşük bulunmuştur. SV (85.42±4.65%) ve BV (85.53±7.19%) örneklerinin MCA değerleri, Trolox (55.06±30.92%) değerini aşmıştır. SV (37.16±16.54%) ve BV (38.47±17.24%) örneklerinin PBS içindeki RSA değerleri arasında fark bulunmamış, her ikisi de AA (71.48±3.66%) ve Trolox (72.87±6.05%) değerlerinin altında kalmıştır. Optimal RSA ve MCA değerleri farklı çözücü ve konsantrasyonlarda gözlemlenmiş, bu durum 500 µg.ml-1 (BV için RSA'da 1.95 µg.ml-1) konsantrasyonda fizyolojik tuzlu su içinde çözünen zehirin optimal AOA için kullanılmasına işaret etmektedir. PBS veya distile su kullanımı ise AOA değerlerinde azalmaya neden olmuştur.

References

  • Denk, B., & Fidan, A. F. (2021). Effects of honeybee (apis mellifera) venom on redox balance, biochemical andhematological profile in diabetic rats: A preliminary study. Turkish Journal of Veterinary & Animal Sciences, 45(2), 257-265.
  • Dontha, S. (2016). A review on antioxidant methods. Asian J. Pharm. Clin. Res, 9(2), 14-32. El Mehdi, I., Falcão, S. I., Boujraf, S., Mustapha, H., Campos, M. G., & Vilas-Boas, M. (2022). Analytical methods for honeybee venom characterization. Journal of Advanced Pharmaceutical Technology & Research, 13(3), 154.
  • Eze, O. B., Nwodo, O. F., & Ogugua, V. N. (2016). Therapeutic effect of honey bee venom. Proteins (enzymes), 1(2).
  • Frangieh, J., Salma, Y., Haddad, K., Mattei, C., Legros, C., Fajloun, Z., & El Obeid, D. (2019). First characterization of the venom from apis mellifera syriaca, a honeybee from the middle east region. Toxins, 11(4), 191.
  • Gulcin, İ., & Alwasel, S. H. (2022). Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes, 10(1), 132.
  • Gupta, R. K., & Stangaciu, S. (2014). Apitherapy: holistic healing through the honeybee and bee products in countries with poor healthcare system. In Beekeeping for poverty alleviation and livelihood security (pp. 413-446). Springer, Dordrecht.
  • Han, S. M., Lee, G. G., & Park, K. K. (2012). Acute dermal toxicity study of bee venom (Apis mellifera L.) in rats. Toxicological research, 28, 99-102.
  • Hwang, D. S., Kim, S. K., & Bae, H. (2015). Therapeutic effects of bee venom on immunological and neurological diseases. Toxins, 7(7), 2413-2421.
  • Lee, K. S., Kim, B. Y., Yoon, H. J., Choi, Y. S., & Jin, B. R. (2016). Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. Developmental & Comparative Immunology, 63, 27-35.
  • Martinello, M., & Mutinelli, F. (2021). Antioxidant activity in bee products: A review. Antioxidants, 10(1), 71.
  • Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380.
  • Pinto, D., Vieira, E. F., Peixoto, A. F., Freire, C., Freitas, V., Costa, P., ... & Rodrigues, F. (2021). Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 334, 127521.
  • Sobral, F., Sampaio, A., Falcão, S., Queiroz, M. J. R., Calhelha, R. C., Vilas-Boas, M., & Ferreira, I. C. (2016). Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food and Chemical Toxicology, 94, 172-177.
  • Somwongin, S., Chantawannakul, P., & Chaiyana, W. (2018). Antioxidant activity and irritation property of venoms from Apis species. Toxicon, 145, 32-39.
  • Şenel, E., & Demir, E. (2018). Bibliometric analysis of apitherapy in complementary medicine literature between 1980 and 2016. Complementary therapies in clinical practice, 31, 47-52.
  • Zhang, S., Liu, Y., Ye, Y., Wang, X. R., Lin, L. T., Xiao, L. Y., ... & Liu, C. Z. (2018). Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon, 148, 64-73.
There are 16 citations in total.

Details

Primary Language English
Subjects Veterinary Biochemistry
Journal Section RESEARCH ARTICLE
Authors

Barış Denk 0000-0002-7586-0895

Publication Date September 30, 2023
Acceptance Date September 25, 2023
Published in Issue Year 2023

Cite

APA Denk, B. (2023). Exploring Apis mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling its In Vitro Potential. Kocatepe Veterinary Journal, 16(3), 420-431. https://doi.org/10.30607/kvj.1343130
AMA Denk B. Exploring Apis mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling its In Vitro Potential. kvj. September 2023;16(3):420-431. doi:10.30607/kvj.1343130
Chicago Denk, Barış. “Exploring Apis Mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling Its In Vitro Potential”. Kocatepe Veterinary Journal 16, no. 3 (September 2023): 420-31. https://doi.org/10.30607/kvj.1343130.
EndNote Denk B (September 1, 2023) Exploring Apis mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling its In Vitro Potential. Kocatepe Veterinary Journal 16 3 420–431.
IEEE B. Denk, “Exploring Apis mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling its In Vitro Potential”, kvj, vol. 16, no. 3, pp. 420–431, 2023, doi: 10.30607/kvj.1343130.
ISNAD Denk, Barış. “Exploring Apis Mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling Its In Vitro Potential”. Kocatepe Veterinary Journal 16/3 (September 2023), 420-431. https://doi.org/10.30607/kvj.1343130.
JAMA Denk B. Exploring Apis mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling its In Vitro Potential. kvj. 2023;16:420–431.
MLA Denk, Barış. “Exploring Apis Mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling Its In Vitro Potential”. Kocatepe Veterinary Journal, vol. 16, no. 3, 2023, pp. 420-31, doi:10.30607/kvj.1343130.
Vancouver Denk B. Exploring Apis mellifera L. Venom’s Antioxidant Power in Various Solvents: Unveiling its In Vitro Potential. kvj. 2023;16(3):420-31.

13520    13521       13522   1352314104

14105         14106        14107       14108