Research Article
BibTex RIS Cite
Year 2022, , 92 - 100, 29.12.2022
https://doi.org/10.46897/livestockstudies.1222935

Abstract

References

  • Akköse, M., Buczinski, S., Özbeyaz, C., Kurban, M., Cengiz, M., Polat, Y., Aslan, O. 2022c. Evaluation of refractometry methods for estimating of passive immunity in neonatal beef calves. Vet. Clin. Pathol. Early view. https://doi.org/10.1111/vcp.13171
  • Akköse, M., Kutsal, H.G., Kurban, M., Çinar, E.M., Polat, Y., Cengiz, M. 2022a. Diagnostic accuracy of digital Brix and serum total protein refractometers in estimating different passive immunity levels in dairy calves. Vet. Immunol. Immunopathol. 249, 110442.
  • Akköse, M., Özbeyaz, C., Buczinski, S. 2022b. Evaluation of 2 refractometers to estimate different passive immunity status in Simmental dairy calves. Prev. Vet. Med. 209, 105778
  • Ball, D.W., 2006. Concentration scales for sugar solutions. J. Chem. Educ. 83 (10), 1489–1491.
  • Buczinski, S., Lu Y., Chigerwe, M., Fecteau, G., Dendukuri, N. 2021. Systematic review and meta-analysis of refractometry for diagnosis of inadequate transfer of passive immunity in dairy calves: Quantifying how accuracy varies with threshold using a Bayesian approach. Prev. Vet. Med. 105306.
  • Buczinski, S., Vandeweerd, J. M. 2016. Diagnostic accuracy of refractometry for assessing bovine colostrum quality: A systematic review and meta-analysis. J. Dairy Sci. 99(9), 7381-7394.
  • Chigerwe, M, Hagey, J.V., Aly, S.S. 2015. Determination of neonatal serum immunoglobulin G concentrations associated with mortality during the first 4 months of life in dairy heifer calves. J. Dairy Res. 82, 400-406.
  • Deelen, S.M., Ollivett, T.L., Haines, D.M., Leslie, K.E. 2014. Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. J. Dairy Sci. 97, 3838-3844.
  • Dewell, R.D., Hungerford, L.L., Keen, J.E., Laegreid, W.W., Griffin, D.D., Rupp, G.P., Grotelueschen, D.M., 2006. Association of neonatal serum immunoglobulin G1 concentration with health and performance in beef calves. J. Am. Vet. Med. Assoc. 228, 914–921.
  • Drikic, M., Windeyer, C., Olsen, S., Fu, Y., Doepel, L., De Buck, J. 2018. Determining the IgG concentrations in bovine colostrum and calf sera with a novel enzymatic assay. J. Anim. Sci. Biotechnol. 9, 69.
  • Elsohaby, I., Keefe, G.P. 2015. Preliminary validation of a calf-side test for diagnosis of failure of transfer of passive immunity in dairy calves. J. Dairy Sci. 98 (7): 4754-4761.
  • Elsohaby, I., McClure, J.T., Keefe, G.P. 2015. Evaluation of digital and optical refractometers for assessing failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med. 29(2), 721-726.
  • Elsohaby, I., Riley, C.B., Hou, S., McClure, J.T., Shaw, R.A., Keefe, G.P. 2014. Measurement of serum immunoglobulin G in dairy cattle using Fourier-transform infrared spectroscopy: A reagent free approach. Vet. J. 202, 510-515.
  • Fischer-Tlustos, A.J., Lopez, A., Puff, C., Wood, K.M., Steele M.A., 2021. Effect of colostrum management on transfer of passive immunity and the potential role of colostral bioactive components on neonatal calf development and metabolism. Can. J. Anim. Sci. 101, 405-426.
  • Fleenor, W.A., Stott, G.H. 1981. Single radial immunodiffusion analysis for quantitation of colostral immunoglobulin concentration. J. Dairy Sci. 64, 740-747.
  • Gamsjäger, L., Elsohaby, I., Pearson, J.M., Levy, M., Pajor, E.A., Windeyer, M.C. 2021. Evaluation of 3 refractometers to determine transfer of passive immunity in neonatal beef calves. J. Vet. Intern. Med. 35(1), 632-643.
  • Godden, S.M., Lombard, J.E., Woolums, A.R. 2019. Colostrum management for dairy calves. North Am. Vet. Clin. Food Anim. Prod. 35:535-556.
  • Hogan, I., Doherty, M., Fagan, J., Kennedy, E., Conneely, M., Brady, P., Ryan, C. 2015. Comparison of rapid laboratory tests for failure of passive transfer in the bovine. Irish Vet. J. 68, 18-28.
  • Hogan, I., Doherty, M., Fagan, J., Kennedy, E., Conneely, M., Crowe, B., Lorenz, I. 2016. Optimisation of the zinc sulphate turbidity test for the determination of immune status. Vet. Rec. 178(7), 169-169.
  • Lee, S.H., Jaekal, J., Bae C.S., Chung, B.H., Yun, S.C., Gwak, M.J., Noh, G. J., Lee, D.H. 2008. Enzyme‐linked immunosorbent assay, single radial immunodiffusion, and indirect methods for the detection of failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med. 22, 212-218.
  • Lombard, J., Urie, N., Garry, F., Godden, S., Quigley, J., Earleywine, T., McGuirk, S., Moore, D., Branan, M., Chamorro, M., Smith, G., Shivley, C., Catherman, D., Haines, D., Heinrichs, A.J., James, R., Maas, J., Sterner, K. 2020. Consensus recommendations on calf-and herd-level passive immunity in dairy calves in the United States. J. Dairy Sci. 103(8), 7611-7624.
  • MacKenzie, D.S. 2021. Application of optical refractometers for the control of concentration. Gearsolutions. 18(5), 26-27.
  • Mee, J.F. 2020. Denormalizing poor dairy youngstock management: dealing with “farm-blindness’’. J Anim. Sci. 98(Suppl 1), S140.
  • Pekcan, M., Fidancı, U.R., Yüceer, B., Özbeyaz, C. 2013. Estimation of passive immunity in newborn calves with routine clinical chemistry measurements. Ankara Üniv. Vet. Fak. Derg. 60, 85-88.
  • Petrie and Watson 2013. Statistics for Veterinary and Animal Science. 3th ed. Wiley-Blackwell.
  • Pisello, L., Boccardo, A., Forte, C., Pravettoni, D., D’Avino, N., Passamonti, F., Rueca, F., 2021. Evaluation of digital and optical refractometers for assessing failure of transfer of passive immunity in Chianina beef -suckler calves reared in Umbria, Italian J. Anim. Sci. 20, 315-323.
  • Todd C.G., McGee M., Tiernan K., Crosson P., O’Riordan E., McClurec J., Lorenz I., Earley B 2018. An observational study on passive immunity in Irish suckler beef and dairy calves: Tests for failure of passive transfer of immunity and associations with health and performance. Prev. Vet. Med. 159; 182–195.
  • Topal, O., Batmaz, H., Mecitoğlu, Z., Uzabacı, E. 2018. Comparison of IgG and semiquantitative tests for evaluation of passive transfer immunity in calves. Turk J. Vet. Anim. Sci. 42: 302-309
  • Vandeputte, S., Detilleux, J., Rollin, F. 2011. Comparison of four refractometers for the investigation of the passive transfer in beef calves. J. Vet. Intern. Med. 25, 1465-1469.
  • Villarroel, A., Miller, T.B., Johnson, E.D., Noyes, K.R., Ward, J.K. 2013. Factors affecting serum total protein and immunoglobulin G concentration in replacement dairy calves. Adv. Dairy Res. 1(2), 106.
  • Waldner, C.L., Rosengren, L.B. 2009. Factors associated with serum immunoglobulin levels in beef calves from Alberta and Saskatchewan and association between passive transfer and health outcomes. Can. Vet. J. 50:275–281
  • Wittum, T.E., Perino, L.J. 1995. Passive immune status at postpartum hour 24 and long-term health and performance of calves. Am. J. Vet. Res. 56:1149–1154.

An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves

Year 2022, , 92 - 100, 29.12.2022
https://doi.org/10.46897/livestockstudies.1222935

Abstract

This study was aimed at determining and comparing the diagnostic accuracy of digital and optical Brix refractometers (D-Brix and O-Brix, respectively) for the estimation of passive immunity status (<16 and <24g/L) in beef calves. Blood was sampled from 163 one to seven-day-old calves. Immunoglobulin G (IgG) concentrations were estimated with D-Brix and O-Brix refractometers, and measured by the radial immunodiffusion (RID) assay used as the reference test. Correlation coefficients (r) were calculated for the results of each method. Youden’s J-index was used to select optimal refractometer cut-off values for estimating IgG of <16 and <24 g/L. Overall test performance and refractometer agreement were assessed using AUCs, diagnostic test accuracy, Cohen's kappa coefficient (κ), and Bland-Altman analysis. Positive correlations existed between the RID-IgG concentrations and Brix percentages (r=0.903 for D-Brix, r=0.885 for O-Brix), and between the results of the two refractometers (r=0.992). The overall test performances of the refractometers were excellent (AUC>0.90). For predicting serum IgG concentrations of <16 and <24 g/L, the optimal cut-off values were <8.3% and <9.4% for the O-Brix refractometer, and 8.4% and 9.6% for the D-Brix refractometer, respectively. At the optimal thresholds for estimating serum IgG concentrations of <16 g/L, the sensitivity and specificity were 91.89% and 97.62% for the D-Brix refractometer, and 91.89% and 96.83% for the O-Brix refractometer, respectively. At the optimal thresholds for estimating serum IgG concentrations of <24 g/L, the sensitivity and specificity were 88.14% and 80.77% for the D-Brix refractometer, and 86.44% and 80.77% for the O-Brix refractometer, respectively. Cohen’s kappa coefficients suggested an almost perfect agreement between the results of the two refractometers for the estimation of IgG of <16 (κ=0.90) and <24 g/L (κ=0.86). In conclusion, digital and optical Brix refractometers could be safely used as monitoring tools for assessing passive immunity status in neonatal beef calves.

References

  • Akköse, M., Buczinski, S., Özbeyaz, C., Kurban, M., Cengiz, M., Polat, Y., Aslan, O. 2022c. Evaluation of refractometry methods for estimating of passive immunity in neonatal beef calves. Vet. Clin. Pathol. Early view. https://doi.org/10.1111/vcp.13171
  • Akköse, M., Kutsal, H.G., Kurban, M., Çinar, E.M., Polat, Y., Cengiz, M. 2022a. Diagnostic accuracy of digital Brix and serum total protein refractometers in estimating different passive immunity levels in dairy calves. Vet. Immunol. Immunopathol. 249, 110442.
  • Akköse, M., Özbeyaz, C., Buczinski, S. 2022b. Evaluation of 2 refractometers to estimate different passive immunity status in Simmental dairy calves. Prev. Vet. Med. 209, 105778
  • Ball, D.W., 2006. Concentration scales for sugar solutions. J. Chem. Educ. 83 (10), 1489–1491.
  • Buczinski, S., Lu Y., Chigerwe, M., Fecteau, G., Dendukuri, N. 2021. Systematic review and meta-analysis of refractometry for diagnosis of inadequate transfer of passive immunity in dairy calves: Quantifying how accuracy varies with threshold using a Bayesian approach. Prev. Vet. Med. 105306.
  • Buczinski, S., Vandeweerd, J. M. 2016. Diagnostic accuracy of refractometry for assessing bovine colostrum quality: A systematic review and meta-analysis. J. Dairy Sci. 99(9), 7381-7394.
  • Chigerwe, M, Hagey, J.V., Aly, S.S. 2015. Determination of neonatal serum immunoglobulin G concentrations associated with mortality during the first 4 months of life in dairy heifer calves. J. Dairy Res. 82, 400-406.
  • Deelen, S.M., Ollivett, T.L., Haines, D.M., Leslie, K.E. 2014. Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. J. Dairy Sci. 97, 3838-3844.
  • Dewell, R.D., Hungerford, L.L., Keen, J.E., Laegreid, W.W., Griffin, D.D., Rupp, G.P., Grotelueschen, D.M., 2006. Association of neonatal serum immunoglobulin G1 concentration with health and performance in beef calves. J. Am. Vet. Med. Assoc. 228, 914–921.
  • Drikic, M., Windeyer, C., Olsen, S., Fu, Y., Doepel, L., De Buck, J. 2018. Determining the IgG concentrations in bovine colostrum and calf sera with a novel enzymatic assay. J. Anim. Sci. Biotechnol. 9, 69.
  • Elsohaby, I., Keefe, G.P. 2015. Preliminary validation of a calf-side test for diagnosis of failure of transfer of passive immunity in dairy calves. J. Dairy Sci. 98 (7): 4754-4761.
  • Elsohaby, I., McClure, J.T., Keefe, G.P. 2015. Evaluation of digital and optical refractometers for assessing failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med. 29(2), 721-726.
  • Elsohaby, I., Riley, C.B., Hou, S., McClure, J.T., Shaw, R.A., Keefe, G.P. 2014. Measurement of serum immunoglobulin G in dairy cattle using Fourier-transform infrared spectroscopy: A reagent free approach. Vet. J. 202, 510-515.
  • Fischer-Tlustos, A.J., Lopez, A., Puff, C., Wood, K.M., Steele M.A., 2021. Effect of colostrum management on transfer of passive immunity and the potential role of colostral bioactive components on neonatal calf development and metabolism. Can. J. Anim. Sci. 101, 405-426.
  • Fleenor, W.A., Stott, G.H. 1981. Single radial immunodiffusion analysis for quantitation of colostral immunoglobulin concentration. J. Dairy Sci. 64, 740-747.
  • Gamsjäger, L., Elsohaby, I., Pearson, J.M., Levy, M., Pajor, E.A., Windeyer, M.C. 2021. Evaluation of 3 refractometers to determine transfer of passive immunity in neonatal beef calves. J. Vet. Intern. Med. 35(1), 632-643.
  • Godden, S.M., Lombard, J.E., Woolums, A.R. 2019. Colostrum management for dairy calves. North Am. Vet. Clin. Food Anim. Prod. 35:535-556.
  • Hogan, I., Doherty, M., Fagan, J., Kennedy, E., Conneely, M., Brady, P., Ryan, C. 2015. Comparison of rapid laboratory tests for failure of passive transfer in the bovine. Irish Vet. J. 68, 18-28.
  • Hogan, I., Doherty, M., Fagan, J., Kennedy, E., Conneely, M., Crowe, B., Lorenz, I. 2016. Optimisation of the zinc sulphate turbidity test for the determination of immune status. Vet. Rec. 178(7), 169-169.
  • Lee, S.H., Jaekal, J., Bae C.S., Chung, B.H., Yun, S.C., Gwak, M.J., Noh, G. J., Lee, D.H. 2008. Enzyme‐linked immunosorbent assay, single radial immunodiffusion, and indirect methods for the detection of failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med. 22, 212-218.
  • Lombard, J., Urie, N., Garry, F., Godden, S., Quigley, J., Earleywine, T., McGuirk, S., Moore, D., Branan, M., Chamorro, M., Smith, G., Shivley, C., Catherman, D., Haines, D., Heinrichs, A.J., James, R., Maas, J., Sterner, K. 2020. Consensus recommendations on calf-and herd-level passive immunity in dairy calves in the United States. J. Dairy Sci. 103(8), 7611-7624.
  • MacKenzie, D.S. 2021. Application of optical refractometers for the control of concentration. Gearsolutions. 18(5), 26-27.
  • Mee, J.F. 2020. Denormalizing poor dairy youngstock management: dealing with “farm-blindness’’. J Anim. Sci. 98(Suppl 1), S140.
  • Pekcan, M., Fidancı, U.R., Yüceer, B., Özbeyaz, C. 2013. Estimation of passive immunity in newborn calves with routine clinical chemistry measurements. Ankara Üniv. Vet. Fak. Derg. 60, 85-88.
  • Petrie and Watson 2013. Statistics for Veterinary and Animal Science. 3th ed. Wiley-Blackwell.
  • Pisello, L., Boccardo, A., Forte, C., Pravettoni, D., D’Avino, N., Passamonti, F., Rueca, F., 2021. Evaluation of digital and optical refractometers for assessing failure of transfer of passive immunity in Chianina beef -suckler calves reared in Umbria, Italian J. Anim. Sci. 20, 315-323.
  • Todd C.G., McGee M., Tiernan K., Crosson P., O’Riordan E., McClurec J., Lorenz I., Earley B 2018. An observational study on passive immunity in Irish suckler beef and dairy calves: Tests for failure of passive transfer of immunity and associations with health and performance. Prev. Vet. Med. 159; 182–195.
  • Topal, O., Batmaz, H., Mecitoğlu, Z., Uzabacı, E. 2018. Comparison of IgG and semiquantitative tests for evaluation of passive transfer immunity in calves. Turk J. Vet. Anim. Sci. 42: 302-309
  • Vandeputte, S., Detilleux, J., Rollin, F. 2011. Comparison of four refractometers for the investigation of the passive transfer in beef calves. J. Vet. Intern. Med. 25, 1465-1469.
  • Villarroel, A., Miller, T.B., Johnson, E.D., Noyes, K.R., Ward, J.K. 2013. Factors affecting serum total protein and immunoglobulin G concentration in replacement dairy calves. Adv. Dairy Res. 1(2), 106.
  • Waldner, C.L., Rosengren, L.B. 2009. Factors associated with serum immunoglobulin levels in beef calves from Alberta and Saskatchewan and association between passive transfer and health outcomes. Can. Vet. J. 50:275–281
  • Wittum, T.E., Perino, L.J. 1995. Passive immune status at postpartum hour 24 and long-term health and performance of calves. Am. J. Vet. Res. 56:1149–1154.
There are 32 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section 62-1
Authors

Mehmet Akköse

Ceyhan Özbeyaz This is me 0000-0002-3748-9992

Publication Date December 29, 2022
Published in Issue Year 2022

Cite

APA Akköse, M., & Özbeyaz, C. (2022). An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves. Livestock Studies, 62(2), 92-100. https://doi.org/10.46897/livestockstudies.1222935
AMA Akköse M, Özbeyaz C. An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves. Livestock Studies. December 2022;62(2):92-100. doi:10.46897/livestockstudies.1222935
Chicago Akköse, Mehmet, and Ceyhan Özbeyaz. “An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves”. Livestock Studies 62, no. 2 (December 2022): 92-100. https://doi.org/10.46897/livestockstudies.1222935.
EndNote Akköse M, Özbeyaz C (December 1, 2022) An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves. Livestock Studies 62 2 92–100.
IEEE M. Akköse and C. Özbeyaz, “An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves”, Livestock Studies, vol. 62, no. 2, pp. 92–100, 2022, doi: 10.46897/livestockstudies.1222935.
ISNAD Akköse, Mehmet - Özbeyaz, Ceyhan. “An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves”. Livestock Studies 62/2 (December 2022), 92-100. https://doi.org/10.46897/livestockstudies.1222935.
JAMA Akköse M, Özbeyaz C. An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves. Livestock Studies. 2022;62:92–100.
MLA Akköse, Mehmet and Ceyhan Özbeyaz. “An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves”. Livestock Studies, vol. 62, no. 2, 2022, pp. 92-100, doi:10.46897/livestockstudies.1222935.
Vancouver Akköse M, Özbeyaz C. An Assessment of the Accuracy of Digital and Optical Brix Refractometers for Estimating Passive Immunity in Beef Calves. Livestock Studies. 2022;62(2):92-100.