Review
BibTex RIS Cite
Year 2023, , 77 - 79, 31.12.2023
https://doi.org/10.46897/livestockstudies.1416489

Abstract

References

  • Casey, T. M., Crodian, J., Erickson, E., Kuropatwinski, K. K., Gleiberman, A. S., & Antoch, M. P. (2014). Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biology of reproduction, 90(6), 127. https://doi.org/10.1095/biolreprod.113.116137
  • Casey, T. M., Crodian, J., Erickson, E., Kuropatwinski, K. K., Gleiberman, A. S., & Antoch, M. P. (2014). Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biology of reproduction, 90(6), 127. https://doi.org/10.1095/biolreprod.113.116137
  • Casey, T., Suarez-Trujillo, A. M., McCabe, C., Beckett, L., Klopp, R., Brito, L., Rocha Malacco, V. M., Hilger, S., Donkin, S. S., Boerman, J., & Plaut, K. (2021). Transcriptome analysis reveals disruption of circadian rhythms in late gestation dairy cows may increase risk for fatty liver and reduced mammary remodeling. Physiological genomics, 53(11), 441–455. https://doi.org/10.1152/physiolgenomics.00028.2021
  • Dardente, H., Fustin, J. M., & Hazlerigg, D. G. (2009). Transcriptional feedback loops in the ovine circadian clock. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 153(4), 391–398. https://doi.org/10.1016/j.cbpa.2009.03.016
  • Gotlieb, N., Moeller, J., Kriegsfeld, L.J. (2020). Development and Modulation of Female Reproductive Function by Circadian Signals. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_16
  • Han, Q., He, X., Di, R., & Chu, M. (2021). Comparison of expression patterns of six canonical clock genes of follicular phase and luteal phase in Small-tailed Han sheep. Archives animal breeding, 64(2), 457–466. https://doi.org/10.5194/aab-64-457-2021
  • Li, H., Li, K., Zhang, K., Li, Y., Gu, H., Liu, H., Yang, Z., & Cai, D. (2021). The Circadian Physiology: Implications in Livestock Health. International journal of molecular sciences, 22(4), 2111. https://doi.org/10.3390/ijms22042111
  • Lincoln, G. A., Andersson, H., & Loudon, A. (2003). Clock genes in calendar cells as the basis of annual timekeeping in mammals--a unifying hypothesis. The Journal of endocrinology, 179(1), 1–13. https://doi.org/10.1677/joe.0.1790001
  • Maningat, P. D., Sen, P., Rijnkels, M., Sunehag, A. L., Hadsell, D. L., Bray, M., & Haymond, M. W. (2009). Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiological genomics, 37(1), 12–22. https://doi.org/10.1152/physiolgenomics.90341.2008
  • Murphy, B. A., Blake, C. M., Brown, J. A., Martin, A. M., Forde, N., Sweeney, L. M., & Evans, A. C. (2015). Evidence of a molecular clock in the ovine ovary and the influence of photoperiod. Theriogenology, 84(2), 208–216. https://doi.org/10.1016/j.theriogenology.2015.03.008 Notter D. R. (2008). Genetic aspects of reproduction in sheep. Reproduction in domestic animals = Zuchthygiene, 43 Suppl 2, 122–128. https://doi.org/10.1111/j.1439-0531.2008.01151.x
  • Plaut, K., & Casey, T. (2012). Does the circadian system regulate lactation?. Animal : an international journal of animal bioscience, 6(3), 394–402. https://doi.org/10.1017/S1751731111002187
  • Rhodes, V., Maguire, M., Shetty, M., McAloon, C., & Smeaton, A. F. (2022). Periodicity Intensity of the 24 h Circadian Rhythm in Newborn Calves Show Indicators of Herd Welfare. Sensors (Basel, Switzerland), 22(15), 5843. https://doi.org/10.3390/s22155843
  • Rijo-Ferreira, F., & Takahashi, J. S. (2019). Genomics of circadian rhythms in health and disease. Genome medicine, 11(1), 82. https://doi.org/10.1186/s13073-019-0704-0
  • Suárez-Trujillo, A., & Casey, T. M. (2016). Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function. Frontiers in physiology, 7, 301. https://doi.org/10.3389/fphys.2016.00301
  • Suárez-Trujillo, A., & Casey, T. M. (2016). Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function. Frontiers in physiology, 7, 301. https://doi.org/10.3389/fphys.2016.00301 Takahashi J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nature reviews. Genetics, 18(3), 164–179. https://doi.org/10.1038/nrg.2016.150
  • Takahashi, J. S., Hong, H. K., Ko, C. H., & McDearmon, E. L. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature reviews. Genetics, 9(10), 764–775. https://doi.org/10.1038/nrg2430
  • Wagner, N., Mialon, M. M., Sloth, K. H., Lardy, R., Ledoux, D., Silberberg, M., de Boyer des Roches, A., & Veissier, I. (2021). Detection of changes in the circadian rhythm of cattle in relation to disease, stress, and reproductive events. Methods (San Diego, Calif.), 186, 14–21. https://doi.org/10.1016/j.ymeth.2020.09.003

Circadian Genes and Economic Traits in Livestock Animals

Year 2023, , 77 - 79, 31.12.2023
https://doi.org/10.46897/livestockstudies.1416489

Abstract

Circadian rhythms are oscillators of endogenous autonomic activity in all living organisms and regulate economic traits such as reproduction, milk characteristics and growth performance in farm animals. These rhythms are directly or indirectly controlled by the circadian clock in a 24-hour cycle. It has evolved as an adaptive system for living organisms in a cyclical natural environment. A regular circadian rhythm can be associated with good health, well-being, strong immunity, and high economic characteristics. The interaction between circadian rhythmicity and the physiology of farm animals is becoming an important focus of animal science. Understanding the circadian genes (CLOCK, BMAL, PER1, PER2, CRY1, CRY2) and actions regulating circadian oscillation in farm animals is important to improve management and increase economic traits. The study aimed to summarise the research on the effects of circadian rhythm genes on productivity and to highlight the importance of this topic

References

  • Casey, T. M., Crodian, J., Erickson, E., Kuropatwinski, K. K., Gleiberman, A. S., & Antoch, M. P. (2014). Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biology of reproduction, 90(6), 127. https://doi.org/10.1095/biolreprod.113.116137
  • Casey, T. M., Crodian, J., Erickson, E., Kuropatwinski, K. K., Gleiberman, A. S., & Antoch, M. P. (2014). Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biology of reproduction, 90(6), 127. https://doi.org/10.1095/biolreprod.113.116137
  • Casey, T., Suarez-Trujillo, A. M., McCabe, C., Beckett, L., Klopp, R., Brito, L., Rocha Malacco, V. M., Hilger, S., Donkin, S. S., Boerman, J., & Plaut, K. (2021). Transcriptome analysis reveals disruption of circadian rhythms in late gestation dairy cows may increase risk for fatty liver and reduced mammary remodeling. Physiological genomics, 53(11), 441–455. https://doi.org/10.1152/physiolgenomics.00028.2021
  • Dardente, H., Fustin, J. M., & Hazlerigg, D. G. (2009). Transcriptional feedback loops in the ovine circadian clock. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 153(4), 391–398. https://doi.org/10.1016/j.cbpa.2009.03.016
  • Gotlieb, N., Moeller, J., Kriegsfeld, L.J. (2020). Development and Modulation of Female Reproductive Function by Circadian Signals. In: Wray, S., Blackshaw, S. (eds) Developmental Neuroendocrinology. Masterclass in Neuroendocrinology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-40002-6_16
  • Han, Q., He, X., Di, R., & Chu, M. (2021). Comparison of expression patterns of six canonical clock genes of follicular phase and luteal phase in Small-tailed Han sheep. Archives animal breeding, 64(2), 457–466. https://doi.org/10.5194/aab-64-457-2021
  • Li, H., Li, K., Zhang, K., Li, Y., Gu, H., Liu, H., Yang, Z., & Cai, D. (2021). The Circadian Physiology: Implications in Livestock Health. International journal of molecular sciences, 22(4), 2111. https://doi.org/10.3390/ijms22042111
  • Lincoln, G. A., Andersson, H., & Loudon, A. (2003). Clock genes in calendar cells as the basis of annual timekeeping in mammals--a unifying hypothesis. The Journal of endocrinology, 179(1), 1–13. https://doi.org/10.1677/joe.0.1790001
  • Maningat, P. D., Sen, P., Rijnkels, M., Sunehag, A. L., Hadsell, D. L., Bray, M., & Haymond, M. W. (2009). Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiological genomics, 37(1), 12–22. https://doi.org/10.1152/physiolgenomics.90341.2008
  • Murphy, B. A., Blake, C. M., Brown, J. A., Martin, A. M., Forde, N., Sweeney, L. M., & Evans, A. C. (2015). Evidence of a molecular clock in the ovine ovary and the influence of photoperiod. Theriogenology, 84(2), 208–216. https://doi.org/10.1016/j.theriogenology.2015.03.008 Notter D. R. (2008). Genetic aspects of reproduction in sheep. Reproduction in domestic animals = Zuchthygiene, 43 Suppl 2, 122–128. https://doi.org/10.1111/j.1439-0531.2008.01151.x
  • Plaut, K., & Casey, T. (2012). Does the circadian system regulate lactation?. Animal : an international journal of animal bioscience, 6(3), 394–402. https://doi.org/10.1017/S1751731111002187
  • Rhodes, V., Maguire, M., Shetty, M., McAloon, C., & Smeaton, A. F. (2022). Periodicity Intensity of the 24 h Circadian Rhythm in Newborn Calves Show Indicators of Herd Welfare. Sensors (Basel, Switzerland), 22(15), 5843. https://doi.org/10.3390/s22155843
  • Rijo-Ferreira, F., & Takahashi, J. S. (2019). Genomics of circadian rhythms in health and disease. Genome medicine, 11(1), 82. https://doi.org/10.1186/s13073-019-0704-0
  • Suárez-Trujillo, A., & Casey, T. M. (2016). Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function. Frontiers in physiology, 7, 301. https://doi.org/10.3389/fphys.2016.00301
  • Suárez-Trujillo, A., & Casey, T. M. (2016). Serotoninergic and Circadian Systems: Driving Mammary Gland Development and Function. Frontiers in physiology, 7, 301. https://doi.org/10.3389/fphys.2016.00301 Takahashi J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nature reviews. Genetics, 18(3), 164–179. https://doi.org/10.1038/nrg.2016.150
  • Takahashi, J. S., Hong, H. K., Ko, C. H., & McDearmon, E. L. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature reviews. Genetics, 9(10), 764–775. https://doi.org/10.1038/nrg2430
  • Wagner, N., Mialon, M. M., Sloth, K. H., Lardy, R., Ledoux, D., Silberberg, M., de Boyer des Roches, A., & Veissier, I. (2021). Detection of changes in the circadian rhythm of cattle in relation to disease, stress, and reproductive events. Methods (San Diego, Calif.), 186, 14–21. https://doi.org/10.1016/j.ymeth.2020.09.003
There are 17 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section 63-2
Authors

Esra Duman This is me 0000-0003-4209-3009

Özge Özmen 0000-0002-8577-7323

Early Pub Date January 8, 2024
Publication Date December 31, 2023
Submission Date November 28, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023

Cite

APA Duman, E., & Özmen, Ö. (2023). Circadian Genes and Economic Traits in Livestock Animals. Livestock Studies, 63(2), 77-79. https://doi.org/10.46897/livestockstudies.1416489
AMA Duman E, Özmen Ö. Circadian Genes and Economic Traits in Livestock Animals. Livestock Studies. December 2023;63(2):77-79. doi:10.46897/livestockstudies.1416489
Chicago Duman, Esra, and Özge Özmen. “Circadian Genes and Economic Traits in Livestock Animals”. Livestock Studies 63, no. 2 (December 2023): 77-79. https://doi.org/10.46897/livestockstudies.1416489.
EndNote Duman E, Özmen Ö (December 1, 2023) Circadian Genes and Economic Traits in Livestock Animals. Livestock Studies 63 2 77–79.
IEEE E. Duman and Ö. Özmen, “Circadian Genes and Economic Traits in Livestock Animals”, Livestock Studies, vol. 63, no. 2, pp. 77–79, 2023, doi: 10.46897/livestockstudies.1416489.
ISNAD Duman, Esra - Özmen, Özge. “Circadian Genes and Economic Traits in Livestock Animals”. Livestock Studies 63/2 (December 2023), 77-79. https://doi.org/10.46897/livestockstudies.1416489.
JAMA Duman E, Özmen Ö. Circadian Genes and Economic Traits in Livestock Animals. Livestock Studies. 2023;63:77–79.
MLA Duman, Esra and Özge Özmen. “Circadian Genes and Economic Traits in Livestock Animals”. Livestock Studies, vol. 63, no. 2, 2023, pp. 77-79, doi:10.46897/livestockstudies.1416489.
Vancouver Duman E, Özmen Ö. Circadian Genes and Economic Traits in Livestock Animals. Livestock Studies. 2023;63(2):77-9.