Research Article
BibTex RIS Cite
Year 2024, Volume: 64 Issue: 2, 73 - 82, 31.12.2024
https://doi.org/10.46897/livestockstudies.1610636

Abstract

References

  • Abhishek, S., Biswadeep, J. (2014). Organic acids as rumen modifiers. International Journal of Science and Research, 3(11): 2262-2266.
  • Aksu, G., Genel, F., Koturoğlu, G., Kurugöl, Z., Kütükçüler, N., (2006). Serum immunoglobulin (IgG, IgM, IgA) and IgG subclass concentrations in healthy children: a study using nephelometric technique. Turkish Journal of Pediatrics, 48: 9-24.
  • Akyıldız, A.R. (1984). Yemler Bilgisi Laboratuvar Kılavuzu. Ankara Üniversitesi Z. F. Yayını. No: 895, 213s., Ankara.
  • Albayrak, H., Kabu, M. (2016). Determining Serum Haptoglobin and Cytokine Concentrations in Diarrheic Calves. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 30(2):113-117.
  • Almujalli, A.M., El-Deeb, W.M., Eljalii, E.M., Fouda, T.A., AlBlwy, M. (2015). Clinical, Biochemical and Bacteriological Investigation of Pneumonia in Calves with Special Reference to Alpha-1-Acid Glycoprotein Response. International Journal of Veterinary Health Science Research, 3(5): 60-63.
  • Araujo, G., Terré, M., Mereu, A., Ipharraguerre, I.R., Bach, A. (2015). Effects of supplementing a milk replacer with sodium butyrate or tributyrin on performance and metabolism of Holstein calves. Animal Production Science, 56(11): 1834-1841.
  • Baldwin, R.L, McLeod, K.R., Klotz, J.L., Heitmann, R.N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. Journal of Dairy Science, 87: 55-65.
  • Berends, H., Van Reenen, C.G., Stockhofe Zurwieden, N., Gerrits, W.J. (2012). Effects of early rumen development and solid feed composition on growth performance and abomasal health in veal calves. Journal of Dairy Science, 95: 3190-3199.
  • Ceballos, L.S., Morales, E.R., de la T orre Adarve, G., Castro, J.D., Martínez, L.P., Sanz Sampelayo, M.R. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition Analysis, 22:322–329.
  • Chanter, N., Hall, G.A., Bland, A.P., Hayle, A.J., Parsons, K.R. (1984). Dysentery in calves caused by an atypical strain of Escherichia coli. Veterinary Microbiology, 12: 241–253.
  • Claus, R., Gunthner, D., Letzguss, H. (2007). Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig. Journal of Animal Physiology and Animal Nutrition (Berl), 91: 312–318.
  • Davarmanesh, A.R., Fathi Nasri, M.H., Kalantari Firouzabad, A.R., Montazer-Torbatı, M. B. (2015). Effect of Ca-butyrate and Oleobiotec (a flavouring agent) supplemented starter on the performance of Holstein dairy calves. Journal of Agricultural Science, 153: 1506-1513.
  • Diebold, G., Eidelsburger, U. (2006). Acidification of diets as an alternative to antibiotic growth promoters. Antimicrobial Growth Promoters, 311-327.
  • Fernández-Rubio, C., Ordóñez, C., J. Abad-González, J., Garcia-Gallego, A., Pilar Honrubia, M., Jose Mallo, J. and Balaña-Fouce, R. (2009). Immunology, health, and disease: Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poultry Science, 88: 943–948.
  • Ferreira, L.S., Bittar, C.M. (2011). Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin. Animal, 5:2, 239-245.
  • Garcia, M., Greco, L.F., Favoreto, M.G., Marsola, R.S., Martins, L.T., Bisinotto, R.S., Shin, J.H., Lock, A.L., Block, E., Thatcher, W.W., Santos, J.E.P., Staples, C.R. (2014). Effect of supplementing fat to pregnant nonlactating cows on colostral fatty acid profile and passive immunity of the newborn calf. Journal of Dairy Science, 97: 392–405.
  • Gorka, P., Kowalski, Z.M., Pietrzak, P., Kotunia, A., Kiljanczyk, R., Flaga, J., Holst, J.J., Guilloteau, P., Zabielski, R. (2009). Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves. Journal of Physiology and Pharmacology, 60(3): 47-53.
  • Gorka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., Holst, J. J., Guilloteau, R., Zabielski, R. (2011a). Effect of method of delivery of sodium butyrate on rumen development in newborn calves. Journal of Dairy Science, 94: 5578–5588.
  • Govil, K., Yadav, D.S., Patil, A.K., Nayak, S., Baghel, R.P.S., Yadav, P.K., Malapure, C.D., Thakur. D. (2017). Feeding management for early rumen development in calves. Journal of Entomology and Zoology Studies, 5(3): 1132-1139.
  • Guerrero, G.A. (2015). Feeding strategies to improve performance and health of Holsteincalves. https://www.tdx.cat/bitstream/handle/10803/308311/gag1de1.pdf?sequence. Erişim tarihi:28.09.2018.
  • Guilloteau, P., Toullec, R., Patureau.Mirand, P. (1981). Importance of the abomasum in digestion in the preruminant calf. Reproduction Nutrition Development, 21: 885–899.
  • Guilloteau, P., Zabielski, R., David, J.C., Blum, J.W., Morisset, J. A., Biernat M., Woliński, J., Laubitz, D., Hamon, Y. (2009b). Sodium-butyrate as a growth promoter in milk replacer formula for young calves. Journal of Dairy Science, 92:1038-1049.
  • Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R. And Van Immerseel, F. (2010). From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews, 23: 366-384. Hebeler, D., Kulla, S., Winkenwerder, F., Kamphues, J., Zentek, J., Amtsberg, G. (2000). Influence of a formic acid potassiumformate complex on chyme composition as well as on the intestinal microflora of weaned piglets. Proceedings of the Society of Nutrition Physiology, 9: 63
  • Heinrichs, J. (2005). Rumen development in the dairy calf. Advanced Dairy Science and Technology, 17: 179-187.
  • Hiltz, R.L., Laarman, A.H. (2019). Effect of butyrate on passive transfer of immunity in dairy calves. Journal of Dairy Science, 102(5): 4190-4197.
  • Hsueh, C.J., Wang, J.H., Dai, L., Liu, C.C. (2011). Determination of alanine aminotransferase with an electrochemical nano ir-C Biosensor for the screening of liver diseases. Biosensors, 1: 107–117.
  • Huang, X., Yang, K.C., Hyung-Soon, I., Oktay, E.Y., Hak-Sung, K. 2006. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT). Detection Techniques. Sens, 6: 756–782.
  • Janke, B.H., Francis, D.H., Collins, J.E., Libal, M.C., Zeman, D.H., Johnson, D.D. (1989). Attaching and effacing Escherichia coli infections in calves, pigs, lambs, and dogs. Journal of Veterinary Diagnostic Investigation, 1: 6–11.
  • Jiao, J., Li, X., Beauchemin, K.A., Tan, Z., Tang, S., Zhou, C. (2015). Rumen development process in calves as affected by supplemental feeding v. grazing: age-related anatomic development, functional achievement and microbial colonisation. British Journal of Nutrition, 113: 888-900.
  • Kaneko, J.J., Harvey, W., Bruss, M.L. 1997. Clinical Biochemistry of Domestic Animals, 5th edn. Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto. 890-891.
  • Kato, S.I., Sato, K., Chida, H., Roh, S.G., Ohwada, S., Sato, S., Guilloteau, P., Katoh, K. (2011). Effects of na-butyrate supplementation in milk formula on plasma concentrations of gh and insulin, and on rumen papilla development in calves. Journal of Endocrinology, 211: 241–248.
  • Khan, M.A., Lee, H.J., Lee, W.S., Kım, H.S., Kım, S.B., Ki, K.S., Ha, J.K., Lee, H.G., Choi, Y.J. (2007b). Pre-and postweaning performance of Holstein female calves fed milk through step-down and conventional methods. Journal of Dairy Science, 90: 876–885.
  • Kluge, H., Broz, J., Eder, K. (2004). Studies on the influence of benzoic acid as a feed additive on growth performance, digestibility of nutrients, nitrogen balance, microflora and parameters of the microbial metabolism in the gastrointestinal tract of weaned piglets. Tagung für Schweine und Geflügelernährung Halle (Saale) Germany, 42-45.
  • Kotunia, A., Wolinski, J., Laubitz, D. (2004). Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. Journal of Physiology and Pharmacology, 55(2): 59–68.
  • Kühne, S., Hammon, H.M., Bruckmaier, R.M., Morel, C., Zbinden, Y., Blum, J. W. (2000). Growth performance, metabolic and endocrine traits, and absorptive capacity in neonatal calves fed either colostrum or milk replacer at two levels. Journal of Animal Science, 78: 609–620.
  • Laborde, J.M. (2008). Effects of probiotics and yeast culture on rumen development and growth of dairy calves. Ph. D. Thesis. Faculty of the Louisiana State University.
  • Manzanilla, E.G., Nofrarias, M., Anguita, M. (2006). Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. Journal of Animal Science, 84: 2743–2751.
  • Mazzoni, M., Le. Gall, M., De. Filippi, S. (2008). Supplemental sodium butyrate stimulates different gastric cells in weaned pigs. Journal of Nutrition, 138: 1426–1431.
  • Moss, A.R., Newbold, C.J. (2002). Novel feed additives for decreasing methane emissions from ruminants. MAFF Project number: CSA 4320: London.
  • Nazari, M., Karkoodi, K., Alizadeh, A. (2012). Performance and physiological responses of milk-fed calves to coated calcium butyrate supplementation. South African Journal of Animal Science, 42(3): 296–303.
  • Newbold, C.J., Rode, L.M. (2006). Dietary additives to control methanogenesis in the rumen. International congress series. 1293: 138-147.
  • O’Hara, E., Kelly, A., McCabe, M., Kenny, D.A., Waters, L.L., Waters, S.M. (2018). Efect of a butyrate-fortifed milk replacer on gastrointestinal microbiota and products of fermentation in artifcially reared dairy calves at weaning. National Center of Biotechnology Information, 8: 8(1):14901.
  • Partanen, K.H., Mroz, Z. (1999). Organic acids for performance enhancement in pig diets. Nutrition Research Reviews, 12: 117-145.
  • Pouillart, P.R. (1998). Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sciences, 63: 1739-1760. Quigley, J.D., Caldwell, L.A., Sinks, G.D., Heitmann, R.N. (1991). Changes in blood glucose, nonesterified fatty acids, and ketones in response to weaning and feed intake in young calves. Journal of Dairy Science, 74: 250-257.
  • Sato, T., Hidaka, K., Mishima, T., Nibe, K., Kitahara, G., Hidaka, Y., Hiromu, K., Shunichi, K. (2010). Effect of sugar supplementation on rumen protozoa profile and papillae development in retarded growth calves. Journal of Veterinary Medical Science, 72: 1471-1474.
  • Serbester, U., Çakmakçi, C., Göncü, S., Görgülü, M. (2014). Effect of feeding starter containing butyrate salt on pre and post weaning performance of early or normally weaned calves. Revue de Médecine Véterinare, 165(1): 44-48.
  • Sing, O.Y., Sodhi, S.P. (1992). Effect of shock of certain biochemical profiles of blood in calves. Indian Journal of Animal Science, 62: 1031-1036.
  • Ślusarczyk, K., Strzetelski, J.A., Furgał Dierżuk, I. (2010). The effect o sodium butyrate on calf growth and serum level of hydroxybutyric acid. Journal of Animal and Feed Science, 19: 348–357.
  • Suarez, B.J., Van, C.G., Stockhofe, N., Dijkstra, J., Gerrits, W.J.J. (2007). Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. Journal of Dairy Science, 90: 2390-2403.
  • Vakili, A.R., Khorrami, B., Danesh, M., Parand, E. (2013). The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in holstein calves consuming high concentrate diet. Journal of Animal Science, 26(7): 935-944.
  • Valentine, V.H. (2016). Gastro-intestinal development and health in young dairy calves. International Dairy Topics, 15(5): 33-34.
  • Wanat, P., Gorka, P., Kowalski, Z.M. (2015). Short communication: Effect of inclusion rate of microencapsulated sodium butyrate in starter mixture for dairy calves. Journal of Dairy Science, 98: 2682-2686.
  • Wang, C., Liu, Q., Zhang, Y.L., Pei, C.X., Zhang, S.L., Guo, G., Huo, W.J., Yang, W.Z., Wang, H. 2016. Effects of isobutyrate supplementation in pre- and post-weaned dairy calves diet on growth performance, rumen development, blood metabolites and hormone secretion. Animal, 11(5): 794-801.
  • Wayne, W.D. (1987). Biostatistics: A foundation for Analysis in The Health Sciences, 5th. edition, ISBN:0-471-52514-6 Wiley Series, John Wiley &Sons, New York, 737p.
  • Wenhui, L., Alateng, L., Evans, A., Gao, S., Yu, Z., Bu, D., Ma, L. (2020). Supplementation with sodium butyrate improves rumen fermentation, antioxidant capability, and immune function in dairy calves before weaning. Journal of Animal Science and Biotechnology, 2,1-25.
  • Yu, K., Canalias, F., Oriol, D., Arroyo, L., Pato, R., Saco, Y., Terre, M., Bassols, A. (2019). Age reletaed serum biochemical reference intervals established for unweaned calves and piglets in the post weaning period. Frontiers in Veterinary Science, 6(123): 1-12.
  • Zabielski, R., Dardillat, C., Le. Huerou.Luron, I. (1998). Periodic fluctuations of gut regulatory peptides in phase with the duodenal migrating myoelectric complex in preruminant calves: effect of different sources of dietary protein. British Journal of Nutrition, 79: 287–296.
  • Zhao, H.L., Gao, Y.X., Li, J.G., Li, Q.F., Cao, Y.F. (2013). Effect of Sodium Butyrate on Growth, Serum Biochemical Parameters and Gastrointestinal Development of Weaning Calves. Acta Veterinaria Et Zootechnica Sinica, 44(10): 1600-1608.

The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli (E. coli) presence1

Year 2024, Volume: 64 Issue: 2, 73 - 82, 31.12.2024
https://doi.org/10.46897/livestockstudies.1610636

Abstract

The present study was conducted to determine the effects of supplementation of milk with sodium butyrate (SB), on calf performance, some blood parameters and Escherichia coli (E.coli) presence in feces. 10 male and 10 female Holstein calves of 7 days of age and 40-45 kg live weight were selected for the trial which lasted 50 days. The milk given to the trial group in the morning feeding was supplemented with SB at a dosage of 3 g/day from day 7 to 21 and 5 g/day from day 21 to 49. Water was provided ad libitum. On days 7 and 50, blood samples were drawn from 6 randomly selected calves from each group for Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), β-Hydroxybutyric Acid (BHBA), Immunoglobulin A (IgA) and Growth Hormone (GH) determinations. Fecal samples were also collected for E.coli counts. At the end of the study, it was observed that SB supplementation had a positive effect on IgA and GH throughout the trial, as well as on GCAA from day 21 to 35 (p<0.05). Whereas BHBA, AST and ALT concentrations, body weight, feed consumption and feed conversion parameters remained unaffected (p>0.05). E.coli analysis in feces, revealed %33.33 less pressure in trial group calves.

References

  • Abhishek, S., Biswadeep, J. (2014). Organic acids as rumen modifiers. International Journal of Science and Research, 3(11): 2262-2266.
  • Aksu, G., Genel, F., Koturoğlu, G., Kurugöl, Z., Kütükçüler, N., (2006). Serum immunoglobulin (IgG, IgM, IgA) and IgG subclass concentrations in healthy children: a study using nephelometric technique. Turkish Journal of Pediatrics, 48: 9-24.
  • Akyıldız, A.R. (1984). Yemler Bilgisi Laboratuvar Kılavuzu. Ankara Üniversitesi Z. F. Yayını. No: 895, 213s., Ankara.
  • Albayrak, H., Kabu, M. (2016). Determining Serum Haptoglobin and Cytokine Concentrations in Diarrheic Calves. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 30(2):113-117.
  • Almujalli, A.M., El-Deeb, W.M., Eljalii, E.M., Fouda, T.A., AlBlwy, M. (2015). Clinical, Biochemical and Bacteriological Investigation of Pneumonia in Calves with Special Reference to Alpha-1-Acid Glycoprotein Response. International Journal of Veterinary Health Science Research, 3(5): 60-63.
  • Araujo, G., Terré, M., Mereu, A., Ipharraguerre, I.R., Bach, A. (2015). Effects of supplementing a milk replacer with sodium butyrate or tributyrin on performance and metabolism of Holstein calves. Animal Production Science, 56(11): 1834-1841.
  • Baldwin, R.L, McLeod, K.R., Klotz, J.L., Heitmann, R.N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. Journal of Dairy Science, 87: 55-65.
  • Berends, H., Van Reenen, C.G., Stockhofe Zurwieden, N., Gerrits, W.J. (2012). Effects of early rumen development and solid feed composition on growth performance and abomasal health in veal calves. Journal of Dairy Science, 95: 3190-3199.
  • Ceballos, L.S., Morales, E.R., de la T orre Adarve, G., Castro, J.D., Martínez, L.P., Sanz Sampelayo, M.R. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition Analysis, 22:322–329.
  • Chanter, N., Hall, G.A., Bland, A.P., Hayle, A.J., Parsons, K.R. (1984). Dysentery in calves caused by an atypical strain of Escherichia coli. Veterinary Microbiology, 12: 241–253.
  • Claus, R., Gunthner, D., Letzguss, H. (2007). Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig. Journal of Animal Physiology and Animal Nutrition (Berl), 91: 312–318.
  • Davarmanesh, A.R., Fathi Nasri, M.H., Kalantari Firouzabad, A.R., Montazer-Torbatı, M. B. (2015). Effect of Ca-butyrate and Oleobiotec (a flavouring agent) supplemented starter on the performance of Holstein dairy calves. Journal of Agricultural Science, 153: 1506-1513.
  • Diebold, G., Eidelsburger, U. (2006). Acidification of diets as an alternative to antibiotic growth promoters. Antimicrobial Growth Promoters, 311-327.
  • Fernández-Rubio, C., Ordóñez, C., J. Abad-González, J., Garcia-Gallego, A., Pilar Honrubia, M., Jose Mallo, J. and Balaña-Fouce, R. (2009). Immunology, health, and disease: Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poultry Science, 88: 943–948.
  • Ferreira, L.S., Bittar, C.M. (2011). Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin. Animal, 5:2, 239-245.
  • Garcia, M., Greco, L.F., Favoreto, M.G., Marsola, R.S., Martins, L.T., Bisinotto, R.S., Shin, J.H., Lock, A.L., Block, E., Thatcher, W.W., Santos, J.E.P., Staples, C.R. (2014). Effect of supplementing fat to pregnant nonlactating cows on colostral fatty acid profile and passive immunity of the newborn calf. Journal of Dairy Science, 97: 392–405.
  • Gorka, P., Kowalski, Z.M., Pietrzak, P., Kotunia, A., Kiljanczyk, R., Flaga, J., Holst, J.J., Guilloteau, P., Zabielski, R. (2009). Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves. Journal of Physiology and Pharmacology, 60(3): 47-53.
  • Gorka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., Holst, J. J., Guilloteau, R., Zabielski, R. (2011a). Effect of method of delivery of sodium butyrate on rumen development in newborn calves. Journal of Dairy Science, 94: 5578–5588.
  • Govil, K., Yadav, D.S., Patil, A.K., Nayak, S., Baghel, R.P.S., Yadav, P.K., Malapure, C.D., Thakur. D. (2017). Feeding management for early rumen development in calves. Journal of Entomology and Zoology Studies, 5(3): 1132-1139.
  • Guerrero, G.A. (2015). Feeding strategies to improve performance and health of Holsteincalves. https://www.tdx.cat/bitstream/handle/10803/308311/gag1de1.pdf?sequence. Erişim tarihi:28.09.2018.
  • Guilloteau, P., Toullec, R., Patureau.Mirand, P. (1981). Importance of the abomasum in digestion in the preruminant calf. Reproduction Nutrition Development, 21: 885–899.
  • Guilloteau, P., Zabielski, R., David, J.C., Blum, J.W., Morisset, J. A., Biernat M., Woliński, J., Laubitz, D., Hamon, Y. (2009b). Sodium-butyrate as a growth promoter in milk replacer formula for young calves. Journal of Dairy Science, 92:1038-1049.
  • Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R. And Van Immerseel, F. (2010). From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews, 23: 366-384. Hebeler, D., Kulla, S., Winkenwerder, F., Kamphues, J., Zentek, J., Amtsberg, G. (2000). Influence of a formic acid potassiumformate complex on chyme composition as well as on the intestinal microflora of weaned piglets. Proceedings of the Society of Nutrition Physiology, 9: 63
  • Heinrichs, J. (2005). Rumen development in the dairy calf. Advanced Dairy Science and Technology, 17: 179-187.
  • Hiltz, R.L., Laarman, A.H. (2019). Effect of butyrate on passive transfer of immunity in dairy calves. Journal of Dairy Science, 102(5): 4190-4197.
  • Hsueh, C.J., Wang, J.H., Dai, L., Liu, C.C. (2011). Determination of alanine aminotransferase with an electrochemical nano ir-C Biosensor for the screening of liver diseases. Biosensors, 1: 107–117.
  • Huang, X., Yang, K.C., Hyung-Soon, I., Oktay, E.Y., Hak-Sung, K. 2006. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT). Detection Techniques. Sens, 6: 756–782.
  • Janke, B.H., Francis, D.H., Collins, J.E., Libal, M.C., Zeman, D.H., Johnson, D.D. (1989). Attaching and effacing Escherichia coli infections in calves, pigs, lambs, and dogs. Journal of Veterinary Diagnostic Investigation, 1: 6–11.
  • Jiao, J., Li, X., Beauchemin, K.A., Tan, Z., Tang, S., Zhou, C. (2015). Rumen development process in calves as affected by supplemental feeding v. grazing: age-related anatomic development, functional achievement and microbial colonisation. British Journal of Nutrition, 113: 888-900.
  • Kaneko, J.J., Harvey, W., Bruss, M.L. 1997. Clinical Biochemistry of Domestic Animals, 5th edn. Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto. 890-891.
  • Kato, S.I., Sato, K., Chida, H., Roh, S.G., Ohwada, S., Sato, S., Guilloteau, P., Katoh, K. (2011). Effects of na-butyrate supplementation in milk formula on plasma concentrations of gh and insulin, and on rumen papilla development in calves. Journal of Endocrinology, 211: 241–248.
  • Khan, M.A., Lee, H.J., Lee, W.S., Kım, H.S., Kım, S.B., Ki, K.S., Ha, J.K., Lee, H.G., Choi, Y.J. (2007b). Pre-and postweaning performance of Holstein female calves fed milk through step-down and conventional methods. Journal of Dairy Science, 90: 876–885.
  • Kluge, H., Broz, J., Eder, K. (2004). Studies on the influence of benzoic acid as a feed additive on growth performance, digestibility of nutrients, nitrogen balance, microflora and parameters of the microbial metabolism in the gastrointestinal tract of weaned piglets. Tagung für Schweine und Geflügelernährung Halle (Saale) Germany, 42-45.
  • Kotunia, A., Wolinski, J., Laubitz, D. (2004). Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. Journal of Physiology and Pharmacology, 55(2): 59–68.
  • Kühne, S., Hammon, H.M., Bruckmaier, R.M., Morel, C., Zbinden, Y., Blum, J. W. (2000). Growth performance, metabolic and endocrine traits, and absorptive capacity in neonatal calves fed either colostrum or milk replacer at two levels. Journal of Animal Science, 78: 609–620.
  • Laborde, J.M. (2008). Effects of probiotics and yeast culture on rumen development and growth of dairy calves. Ph. D. Thesis. Faculty of the Louisiana State University.
  • Manzanilla, E.G., Nofrarias, M., Anguita, M. (2006). Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. Journal of Animal Science, 84: 2743–2751.
  • Mazzoni, M., Le. Gall, M., De. Filippi, S. (2008). Supplemental sodium butyrate stimulates different gastric cells in weaned pigs. Journal of Nutrition, 138: 1426–1431.
  • Moss, A.R., Newbold, C.J. (2002). Novel feed additives for decreasing methane emissions from ruminants. MAFF Project number: CSA 4320: London.
  • Nazari, M., Karkoodi, K., Alizadeh, A. (2012). Performance and physiological responses of milk-fed calves to coated calcium butyrate supplementation. South African Journal of Animal Science, 42(3): 296–303.
  • Newbold, C.J., Rode, L.M. (2006). Dietary additives to control methanogenesis in the rumen. International congress series. 1293: 138-147.
  • O’Hara, E., Kelly, A., McCabe, M., Kenny, D.A., Waters, L.L., Waters, S.M. (2018). Efect of a butyrate-fortifed milk replacer on gastrointestinal microbiota and products of fermentation in artifcially reared dairy calves at weaning. National Center of Biotechnology Information, 8: 8(1):14901.
  • Partanen, K.H., Mroz, Z. (1999). Organic acids for performance enhancement in pig diets. Nutrition Research Reviews, 12: 117-145.
  • Pouillart, P.R. (1998). Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sciences, 63: 1739-1760. Quigley, J.D., Caldwell, L.A., Sinks, G.D., Heitmann, R.N. (1991). Changes in blood glucose, nonesterified fatty acids, and ketones in response to weaning and feed intake in young calves. Journal of Dairy Science, 74: 250-257.
  • Sato, T., Hidaka, K., Mishima, T., Nibe, K., Kitahara, G., Hidaka, Y., Hiromu, K., Shunichi, K. (2010). Effect of sugar supplementation on rumen protozoa profile and papillae development in retarded growth calves. Journal of Veterinary Medical Science, 72: 1471-1474.
  • Serbester, U., Çakmakçi, C., Göncü, S., Görgülü, M. (2014). Effect of feeding starter containing butyrate salt on pre and post weaning performance of early or normally weaned calves. Revue de Médecine Véterinare, 165(1): 44-48.
  • Sing, O.Y., Sodhi, S.P. (1992). Effect of shock of certain biochemical profiles of blood in calves. Indian Journal of Animal Science, 62: 1031-1036.
  • Ślusarczyk, K., Strzetelski, J.A., Furgał Dierżuk, I. (2010). The effect o sodium butyrate on calf growth and serum level of hydroxybutyric acid. Journal of Animal and Feed Science, 19: 348–357.
  • Suarez, B.J., Van, C.G., Stockhofe, N., Dijkstra, J., Gerrits, W.J.J. (2007). Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. Journal of Dairy Science, 90: 2390-2403.
  • Vakili, A.R., Khorrami, B., Danesh, M., Parand, E. (2013). The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in holstein calves consuming high concentrate diet. Journal of Animal Science, 26(7): 935-944.
  • Valentine, V.H. (2016). Gastro-intestinal development and health in young dairy calves. International Dairy Topics, 15(5): 33-34.
  • Wanat, P., Gorka, P., Kowalski, Z.M. (2015). Short communication: Effect of inclusion rate of microencapsulated sodium butyrate in starter mixture for dairy calves. Journal of Dairy Science, 98: 2682-2686.
  • Wang, C., Liu, Q., Zhang, Y.L., Pei, C.X., Zhang, S.L., Guo, G., Huo, W.J., Yang, W.Z., Wang, H. 2016. Effects of isobutyrate supplementation in pre- and post-weaned dairy calves diet on growth performance, rumen development, blood metabolites and hormone secretion. Animal, 11(5): 794-801.
  • Wayne, W.D. (1987). Biostatistics: A foundation for Analysis in The Health Sciences, 5th. edition, ISBN:0-471-52514-6 Wiley Series, John Wiley &Sons, New York, 737p.
  • Wenhui, L., Alateng, L., Evans, A., Gao, S., Yu, Z., Bu, D., Ma, L. (2020). Supplementation with sodium butyrate improves rumen fermentation, antioxidant capability, and immune function in dairy calves before weaning. Journal of Animal Science and Biotechnology, 2,1-25.
  • Yu, K., Canalias, F., Oriol, D., Arroyo, L., Pato, R., Saco, Y., Terre, M., Bassols, A. (2019). Age reletaed serum biochemical reference intervals established for unweaned calves and piglets in the post weaning period. Frontiers in Veterinary Science, 6(123): 1-12.
  • Zabielski, R., Dardillat, C., Le. Huerou.Luron, I. (1998). Periodic fluctuations of gut regulatory peptides in phase with the duodenal migrating myoelectric complex in preruminant calves: effect of different sources of dietary protein. British Journal of Nutrition, 79: 287–296.
  • Zhao, H.L., Gao, Y.X., Li, J.G., Li, Q.F., Cao, Y.F. (2013). Effect of Sodium Butyrate on Growth, Serum Biochemical Parameters and Gastrointestinal Development of Weaning Calves. Acta Veterinaria Et Zootechnica Sinica, 44(10): 1600-1608.
There are 58 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section 64-2
Authors

Kazım Bilgeçli This is me 0000-0001-5727-8300

Aydan Yılmaz 0000-0002-3091-2954

Publication Date December 31, 2024
Submission Date December 6, 2024
Acceptance Date December 27, 2024
Published in Issue Year 2024 Volume: 64 Issue: 2

Cite

APA Bilgeçli, K., & Yılmaz, A. (2024). The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli (E. coli) presence1. Livestock Studies, 64(2), 73-82. https://doi.org/10.46897/livestockstudies.1610636
AMA Bilgeçli K, Yılmaz A. The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli (E. coli) presence1. Livestock Studies. December 2024;64(2):73-82. doi:10.46897/livestockstudies.1610636
Chicago Bilgeçli, Kazım, and Aydan Yılmaz. “The Effects of Supplementation of Milk With Sodium Butyrate on Calf Performance, Some Blood Parameters and Fecal Escherichia Coli (E. Coli) Presence1”. Livestock Studies 64, no. 2 (December 2024): 73-82. https://doi.org/10.46897/livestockstudies.1610636.
EndNote Bilgeçli K, Yılmaz A (December 1, 2024) The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli (E. coli) presence1. Livestock Studies 64 2 73–82.
IEEE K. Bilgeçli and A. Yılmaz, “The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli (E. coli) presence1”, Livestock Studies, vol. 64, no. 2, pp. 73–82, 2024, doi: 10.46897/livestockstudies.1610636.
ISNAD Bilgeçli, Kazım - Yılmaz, Aydan. “The Effects of Supplementation of Milk With Sodium Butyrate on Calf Performance, Some Blood Parameters and Fecal Escherichia Coli (E. Coli) Presence1”. Livestock Studies 64/2 (December 2024), 73-82. https://doi.org/10.46897/livestockstudies.1610636.
JAMA Bilgeçli K, Yılmaz A. The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli (E. coli) presence1. Livestock Studies. 2024;64:73–82.
MLA Bilgeçli, Kazım and Aydan Yılmaz. “The Effects of Supplementation of Milk With Sodium Butyrate on Calf Performance, Some Blood Parameters and Fecal Escherichia Coli (E. Coli) Presence1”. Livestock Studies, vol. 64, no. 2, 2024, pp. 73-82, doi:10.46897/livestockstudies.1610636.
Vancouver Bilgeçli K, Yılmaz A. The effects of supplementation of milk with sodium butyrate on calf performance, some blood parameters and fecal Escherichia coli (E. coli) presence1. Livestock Studies. 2024;64(2):73-82.