Review
BibTex RIS Cite

Etlik Piliç Refahının Tespitinde Yeni Nesil Teknolojik Sistemlerin Önemi

Year 2020, Volume: 1 Issue: 2, 47 - 60, 31.12.2020

Abstract

Bu çalışmanın ana amacı, yeni nesil teknolojilerin ve yöntemlerin etlik piliçlerin refah seviyelerini belirlemek için nasıl kullanıldığını belirlemektir. İnceleme için sorulan ilk soru, "Hangi teknolojiler refahla ilgilidir?” İkinci soru ise, bu teknolojik sistemler ile etlik piliçlerin refah düzeyi belirlenebilir mi?" Etlik piliçlerin değerlendirilmesi için kullanılan Refah Kalitesi® protokolü, kullanılan teknolojik sistemlerin analiz edilmesi için bir çerçeve olarak kullanılmıştır. Araştırmada, Web of Science ve Scopus veri tabanlarından elde edilen hakemli makaleler kullanılmıştır. Çalışma sonucunda elde edilen verilere göre, refah kalitesi protokolü içinde yer alan “İyi sağlık” ilkesi, yeni nesil teknolojilerin kullanıldığı çalışmalarda ele alınan ana kriterken, en az gözlemlenen ilke “iyi beslenme” ilkesi olarak tespit edilmiştir. Bu çalışmada aynı zamanda teknolojik sistemlerin kullanımlarına göre (konum, üretim sistemi ve ölçülen değişkenler) değerlendirilmesi gerçekleştirilmiştir. Sonuçlar, yeni nesil teknolojilerin ana odak noktasının etlik piliç tesisleri ile ilgili sorunlar olduğunu ortaya koymaktadır. Bununla birlikte piliçlerin serbest dolaştığı sistemlere, mezbahalara ve taşıma sorunlarına daha az dikkat edildiği görülmektedir. Yeni nesil teknolojilerin kullanımı ile elde edilen değerli çıktılar göz önüne alındığında, bu teknolojilerin etlik piliç üretiminde kullanımı, çiftçi adaptasyonunu da dikkate alarak teşvik edilmeye devam edilmelidir.

References

  • Alvino, G.M., Blatchford, R.A., Archher, G.S., Mench, J.A., 2009. Light intensity during rearing affects the behavioural synchrony and resting patterns of broiler chickens. Br. Poult. Sci., 50, 275–283.
  • Aydin, A., 2017. Development of an early detection system for lameness of broilers using computer vision. Comput. Electron. Agric., 136, 140–146.
  • Aydin, A., 2017. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens. Comput. Electron. Agric., 135, 4–10.
  • Aydin, A., 2016. Berckmans, D. Using sound technology to automatically detect the short‐term feeding behaviours of broiler chickens. Comput. Electron. Agric., 121, 25–31.
  • Aydin, A. Bahr, C. Berckmans, D., 2013. An innovative monitoring system to measure the feed intake of broiler chickens using pecking sounds. 6th European Conference on Precision Livestock Farming, ECPLF 2013, Leuven, Belgium, 10–12 September, 926–936.
  • Aydin, A., Bahr, C., Berckmans, D., 2015. Automatic classification of measures of lying to assess the lameness of broilers. Anim. Welf., 24, 335–343.
  • Blokhuis, H.J., Veissier, I., Miele, M., Jones, B., 2010. The Welfare Quality ® project and beyond: Safeguarding farm animal well‐being. Acta Agric. Scand Sect. A, 60, 129–140.
  • Bright, A., 2008. Vocalisations and acoustic parameters of flock noise from feather pecking and non‐feather pecking laying flocks. Br. Poult. Sci., 49, 241–249.
  • Broom, D.M.; Molento, C.F.M. Bem estar animal: conceito e questões relacionadas ‐ revisão. Arch. Vet. Sci. 2004, 9, 1–11. Broom, D.M., 2010. Animal Welfare: An Aspect of Care, Sustainability, and Food Quality Required by the Public. J. Vet. Med. Educ., 37, 83–88.
  • Calvet, S., Carlos Campelo, J., Estelles, F., Perles, A., Mercado, R., Jose Serrano, J., 2014. Suitability Evaluation of Multipoint Simultaneous CO2 Sampling Wireless Sensors for Livestock Buildings. Sensors, 14, 10479– 10496.
  • Caplen, G., Hothersall, B., Murrell, J.C., Nicol, C.J., Waterman‐Pearson, A.E., Weeks, C.A., Colborne, G.R., 2012. Kinematic analysis quantifies Gait abnormalities associated with lameness in broiler chickens and identifies evolutionary Gait differences. PLoS One, 7, 1–11. Cavusoglu, E., Petek, M., Abdourhamane, I.M., Akkoc, A., Topal, E., 2018. Effects of different floor housing systems on the welfare of fast‐growing broilers with an extended fattening period. Arch. Anim. Breed., 61, 9–16.
  • Cavusoglu, E., Petek, M., 2019. Effects of different floor materials on the welfare and behaviour of slow‐ and fast-growing broilers. Arch. Anim. Breed., 62, 335–344.
  • Clark, B., Stewart, G.B., Panzone, L.A., Kyriazakis, I., Frewer, L.J., 2016. A Systematic Review of Public Attitudes, Perceptions and Behaviours Towards Production Diseases Associated with Farm Animal Welfare. J. Agric. Environ. Ethics, 29, 455–478.
  • Coenen, A.M.L., Lankhaar, J., Lowe, J.C., McKeegan, D.E.F., 2009. Remote monitoring of electroencephalogram electrocardiogram, and behavior during controlled atmosphere stunning in broilers: Implications for welfare. Poult. Sci., 88, 10–19.
  • Cordeiro, M.B., Tinnco, I.F.F., Mesquita Filho, R.M., Sousa, F.C., 2011. Digital image analysis for young chicken’s behavior evaluation. Eng. Agric., 31, 418–426.
  • Costa, L. Pereira, D. Bueno, L., Pandorfi, H., 2012. Some aspects of chicken behavior and welfare. Rev. Bras. Ciência Avícola, 14, 159–164.
  • Curi, T.M.C., Conti, D., Vercellino, R.A., Massari, J.M., Moura, D.J., Souza, Z.M., Montanari, R., 2017. Positioning of sensors for control of ventilation systems in broiler houses: a case study. Sci. Agric., 74, 101–109.
  • Dawkins, M.S., Cain, R., Roberts, S.J., 2012. Optical flow, flock behaviour and chicken welfare. Anim. Behav., 84, 219–223. Dawkins, M.S., Cain, R., Merelie, K., Roberts, S.J., 2013. In search of the behavioural correlates of optical flow patterns in the automated assessment of broiler chicken welfare. Appl. Anim. Behav. Sci., 145, 44–50.
  • Demmers, T.G.M., Cao, Y., Gauss, S., Lowe, J.C., Parsons, D.J., Wathes, C.M., 2018. Neural predictive control of broiler chicken and pig growth. Biosyst. Eng., 173, 134–142.
  • De Jong, I.C., Hindle, V.A., Butterworth, A., Engel, B., Ferrari, P., Gunnink, H., Moya, T.P., Tuyttens, F.A.M., Reenen, C.G., 2015. Simplifying the Welfare Quality ® assessment protocol for broiler chicken welfare. Animal, 10, 117–127.
  • Ferreira, V.M.O.S., Francisco, N.S., Belloni, M., Aguirre, G.M.Z., Caldara, F.R., Nääs, I.A., Garcia, R.G., Almeida, P.I.C.L., Polycarpo, G. V., 2011. Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy densities. Rev. Bras. Cienc. Avic., 13, 113–118.
  • Fontana, I., Tullo, E., Scrase, A., Butterworth, A., 2016. Vocalisation sound pattern identification in young broiler chickens. Animal, 10, 1567–1574.
  • Fontana, I., Tullo, E., Butterworth, A., Guarino, M., 2015. An innovative approach to predict the growth in intensive poultry farming. Comput. Electron. Agric., 119, 178–183.
  • Fraser, D., 2014. The globalisation of farm animal welfare. Rev. sci. tech., 33, 33–38.
  • Giloh, M., Shinder, D., Yahav, S., 2012. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult. Sci., 91, 175–188.
  • Goldberg, A.M., 2016. Farm Animal Welfare and Human Health. Curr. Environ. Heal., 3, 313–321.
  • Gocsik, É., Brooshooft, S.D., de Jong, I.C., Saatkamp, H.W., 2016. Cost‐efficiency of animal welfare in broiler production systems: A pilot study using the Welfare Quality® assessment protocol. Agric. Syst., 146, 55–69.
  • Hindle, V.A., Lambooij, E., Reimert, H.G.M., Workel, L.D., Gerritzen, M.A., 2010. Animal welfare concerns during the use of the water bath for stunning broilers, hens, and ducks. Poult. Sci., 89, 401–412.
  • Honorato, L.A., Hötzel, M.J., Gomes, C.C.M., Silveira, I.D.B., Machado Filho, L.C.P., 2012. Particularidades relevantes da interação humano‐animal para o bem‐estar e produtividade de vacas leiteiras. Ciência Rural, 42, 332–339.
  • Jukan, A., Masip‐Bruin, X., Amla, N., 2017. Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review. ACM Comput. Surv., 50, 1–27.
  • Kashiha, M., Pluk, A., Bahr, C., Vranken, E., Berckmans, D., 2013. Development of an early warning system for a broiler house using computer vision. Biosyst. Eng., 116, 36–45.
  • Kaukonen, E., Norring, M., Valros, A., 2016. Effect of litter quality on foot pad dermatitis, hock burns and breast blisters in broiler breeders during the production period. Avian Pathol., 45, 667–673.
  • Kittelsen, K.E., Moe, R.O., Hoel, K., Kolbjørnsen, Ø., Nafstad, O., Granquist, E.G., 2017. Comparison of flock characteristics, journey duration and pathology between fl ocks with a normal and a high percentage of broilers ‘dead‐on‐arrival’ at abattoirs. Animal, 11, 2301–2308.
  • Kristensen, H.H., Cornou, C., 2011. Automatic detection of deviations in activity levels in groups of broiler chickens ‐ A pilot study. Biosyst. Eng., 109, 369–376.
  • Lewis, N.J., Hurnik, J.F., 1990. Locomotion of broiler chickens in floor pens. Poult. Sci., 69, 1087–1093.
  • Lin, T., Shah, S.B., Wang‐Li, L., Oviedo‐Rondón, E.O., Post, J., 2016. Development of MOS sensor‐based NH3 monitor for use in poultry houses. Comput. Electron. Agric., 127, 708–715.
  • McKeegan, D.E.F., Reimert, H.G.M., Hindle, V.A., Boulcott, P., Sparrey, J.M., Wathes, C.M., Demmers, T.G.M., Gerritzen, M.A., 2013. Physiological and behavioral responses of poultry exposed to gas‐filled high expansion foam. Poult. Sci., 92, 1145–1154.
  • Mehdizadeh, S., Garcia, R.G., Abe, J.M., 2018. Paraconsistent logic used for estimating the gait score of broiler chickens. Biosyst. Eng., 173, 115–123.
  • Miele, M., Veissier, I., Evans, A., Botreau, R. 2011. Animal welfare: establishing a dialogue between science and society. Anim. Welf., 20, 103–117.
  • Minka, N.S., Ayo, J.O., 2010. Physiological responses of food animals to road transportation stress. African J. Biotechnol., 9, 6601–6613.
  • Moe, R.O., Bohlin, J., Flø, A., Vasdal, G., Stubsjøen, S.M., 2017. Hot chicks, cold feet. Physiol. Behav., 179, 42– 48. Montis, A., Pinna, A., Barra, M., Vranken, E., 2013. Analysis of poultry eating and drinking behavior by software eYeNamic. J. Agric. Eng., 44, 166–172.
  • Moura, D.J., Nääs, I.A., Alves, E.C.S., Carvalho, T.M., Vale, M.M., Lima, K.A.O., 2008. Noise analysis to evaluate chick thermal comfort. Sci. Agric., 65, 438–443.
  • Moura, D.J., Nääs, I.A., Pereira, D.F., Silva, R.B.T.R., Camargo, G.A., 2006. Animal welfare concepts and strategy for poultry production: A review. Rev. Bras. Cienc. Avic., 8, 137–148.
  • Naas, I.A., Sonoda, L.T., Romanini, C.E.B., Morello, G.M., Neves, H.A.F., Baracho, M.S., Souza, S.R.L.S., Menezes, A.G., Mollo Neto, M., Moura, D.J., 2008. Morphological Asymmetry and Broiler Welfare. Brazilian J. Poult. Sci., 10, 209–213.
  • Naas, I.A., Baracho, M.D.S., Salgado, D.D., Sonoda, L.T., Carvalho, V.R.C., Moura, D.J., Paz, I.C.L.A., 2009. Broilers’ toes asymmetry and walking ability assesment [Assimetria dos pés de frangos de corte e medida de habilidade locomotora]. Eng. Agric., 29, 538–546.
  • Naas, I.A., Paz, I.C.L.A., Baracho, M.S., Menezes, A.G., Lima, K.A.O., Bueno, L.G.F., Mollo Neto, M., de Carvalho, V.C., Almeida, I.C.L., Souza, A.L., 2010. Assessing locomotion deficiency in broiler chicken. Sci. Agric., 67, 129–135.
  • Nascimento, G.R., Naas, I.A., Baracho, M.S., Pereira, D.F., Neves, D.P., 2014. Infrared thermography in the estimation of thermal comfort of broilers. Rev. Bras. Eng. Agric. E Ambient., 18, 658–663.
  • Nascimento, G.R., Pereira, D.F., Naas, I.A., Rodrigues, L.H.A., 2011. Thermal comfort fuzzy index for broiler chickens Eng. Agric., 31, 219–229.
  • OECD‐FAO, 2019. Agricultural Outlook 2019‐2028, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations: Rome.
  • Roberts, S.J., Cain, R., Dawkins, M.S., 2012. Prediction of welfare outcomes for broiler chickens using Bayesian regression on continuous optical flow data. J. R. Soc. Interface, 9, 3436–3443.
  • Rushen, J., Chapinal, N., Passillé, A.M., 2012. Automated monitoring of behavioural‐based animal welfare indicators. Anim. Welf., 21, 339–350.
  • Shields, S.J., Raj, A.B.M. A Critical Review of Electrical Water‐Bath Stun Systems for Poultry Slaughter and Recent Developments in Alternative Technologies. J. Appl. Anim. Welf. Sci. 2010, 13, 281–299.
  • Silvera, A.M., Knowles, T.G., Butterworth, A., Berckmans, D., Vranken, E., Blokhuis, H.J. Lameness assessment with automatic monitoring of activity in commercial broiler flocks. Poult. Sci. 2017, 96, 2013–2017.
  • Stadig, L.M., Ampe, B., Rodenburg, T.B., Reubens, B., Maselyne, J., Zhuang, S., Criel, J., Tuyttens, F.A.M., 2018. An automated positioning system for monitoring chickens’ location: Accuracy and registration success in a free‐range area. Appl. Anim. Behav. Sci., 201, 31–39.
  • Stadig, L.M., Rodenburg, T.B., Ampe, B., Reubens, B., Tuyttens, F.A.M., 2018. An automated positioning system for monitoring chickens’ location: Effects of wearing a backpack on behaviour, leg health and production. Appl. Anim. Behav. Sci., 198, 83–88.
  • Steenfeldt, S., Sørensen, P., Nielsen, B.L., 2019. Effects of choice feeding and lower ambient temperature on feed intake, growth, foot health, and panting of fast‐ and slow‐growing broiler strains. Poult. Sci., 98, 503– 513.
  • Taylor, P.S., Hemsworth, P.H., Groves, P.J., Gebhardt‐Henrich, S.G., Rault, J.‐L., 2017. Ranging behaviour of commercial free‐range broiler chickens 1: Factors related to flock variability. Animals, 7, 1–14.
  • Taylor, P.S., Hemsworth, P.H., Groves, P.J., Gebhardt‐Henrich, S.G., Rault, J.‐L., 2017. Ranging behaviour of commercial free‐range broiler chickens 2: Individual variation. Animals, 7, 1–9.
  • Toppel, K., Kaufmann, F., Sch, H., Gauly, M., Andersson, R., 2019. Effect of pH‐lowering litter amendment on animal‐based welfare indicators and litter quality in a European commercial broiler husbandry. Poult. Sci., 98, 1181–1189.
  • Tullo, E., Fontana, I., Peña Fernandez, A., Vranken, E., Norton, T., Berckmans, D., Guarino, M., 2017. Association between environmental predisposing risk factors and leg disorders in broiler chickens. J. Anim. Sci., 95, 1512–1520.
  • Tuyttens, F.A.M., Federici, J.F., Vanderhasselt, R.F., Goethals, K., Duchateau, L., Sans, E.C.O., Molento, C.F.M., 2015. Assessment of welfare of Brazilian and Belgian broiler flocks using the Welfare Quality protocol. Poult. Sci., 94, 1758–1766.
  • Vanderhasselt, R.F., Sprenger, M., Duchateau, L., Tuyttens, F.A.M., 2013. Automated assessment of footpad dermatitis in broiler chickens at the slaughter‐line: Evaluation and correspondence with human expert Sustainability 2020, 12, Poult. Sci., 92, 12–18.
  • Van Hertem, T., Rooijakkers, L., Berckmans, D., Peña Fernández, A., Norton, T., Berckmans, D., Vranken, E., 2017. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Comput. Electron. Agric., 138, 1–10.
  • Van Hertem, T., Norton, T., Berckmans, D., Vranken, E., 2018. Predicting broiler gait scores from activity monitoring and flock data. Biosyst. Eng., 173, 93–102.
  • Vanhonacker, F., Tuyttens, F.A.M., Verbeke, W., 2016. Belgian citizens’ and broiler producers’ perceptions of broiler chicken welfare in Belgium versus Brazil. Poult. Sci., 95, 1555–1563.
  • Vizzier Thaxton, Y., Christensen, K.D., Mench, J.A., Rumley, E.R., Daugherty, C., Feinberg, B., Parker, M., Siegel, P., Scanes, C.G., 2016. Animal welfare challenges for today and tomorrow. Poult. Sci., 95, 2198–2207.
  • Youssef, A., Exadaktylos, V., Berckmans, D., 2015. Towards real‐time control of chicken activity in a ventilated chamber. Biosyst. Eng., 135, 31–43.
  • Yunes, M.C., Von Keyserlingk, M.A.G., Hötzel, M.J., 2017. Brazilian citizens’ opinions and attitudes about farm animal production systems. Animals, 7, 1–15.
  • Webster, A.J.F., 2009. The virtuous bicycle: a delivery vehicle for improved farm animal welfare. Animal Welfare, 18, 141–147.
  • Welfare Quality ® 2009. Welfare Quality® assessment protocol for poultry (broilers, laying hens), Welfare Quality® Consortium. Lelystad, Netherlands.
  • Wilhelmsson, S., Yngvesson, J., Jönsson, L., Gunnarsson, S., Wallenbeck, A., 2019. Welfare Quality ® assessment of a fast‐growing and a slower‐growing broiler hybrid, reared until 10 weeks and fed a low‐protein, highprotein or mussel‐ meal diet. Livest. Sci., 219, 71–79.
Year 2020, Volume: 1 Issue: 2, 47 - 60, 31.12.2020

Abstract

References

  • Alvino, G.M., Blatchford, R.A., Archher, G.S., Mench, J.A., 2009. Light intensity during rearing affects the behavioural synchrony and resting patterns of broiler chickens. Br. Poult. Sci., 50, 275–283.
  • Aydin, A., 2017. Development of an early detection system for lameness of broilers using computer vision. Comput. Electron. Agric., 136, 140–146.
  • Aydin, A., 2017. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens. Comput. Electron. Agric., 135, 4–10.
  • Aydin, A., 2016. Berckmans, D. Using sound technology to automatically detect the short‐term feeding behaviours of broiler chickens. Comput. Electron. Agric., 121, 25–31.
  • Aydin, A. Bahr, C. Berckmans, D., 2013. An innovative monitoring system to measure the feed intake of broiler chickens using pecking sounds. 6th European Conference on Precision Livestock Farming, ECPLF 2013, Leuven, Belgium, 10–12 September, 926–936.
  • Aydin, A., Bahr, C., Berckmans, D., 2015. Automatic classification of measures of lying to assess the lameness of broilers. Anim. Welf., 24, 335–343.
  • Blokhuis, H.J., Veissier, I., Miele, M., Jones, B., 2010. The Welfare Quality ® project and beyond: Safeguarding farm animal well‐being. Acta Agric. Scand Sect. A, 60, 129–140.
  • Bright, A., 2008. Vocalisations and acoustic parameters of flock noise from feather pecking and non‐feather pecking laying flocks. Br. Poult. Sci., 49, 241–249.
  • Broom, D.M.; Molento, C.F.M. Bem estar animal: conceito e questões relacionadas ‐ revisão. Arch. Vet. Sci. 2004, 9, 1–11. Broom, D.M., 2010. Animal Welfare: An Aspect of Care, Sustainability, and Food Quality Required by the Public. J. Vet. Med. Educ., 37, 83–88.
  • Calvet, S., Carlos Campelo, J., Estelles, F., Perles, A., Mercado, R., Jose Serrano, J., 2014. Suitability Evaluation of Multipoint Simultaneous CO2 Sampling Wireless Sensors for Livestock Buildings. Sensors, 14, 10479– 10496.
  • Caplen, G., Hothersall, B., Murrell, J.C., Nicol, C.J., Waterman‐Pearson, A.E., Weeks, C.A., Colborne, G.R., 2012. Kinematic analysis quantifies Gait abnormalities associated with lameness in broiler chickens and identifies evolutionary Gait differences. PLoS One, 7, 1–11. Cavusoglu, E., Petek, M., Abdourhamane, I.M., Akkoc, A., Topal, E., 2018. Effects of different floor housing systems on the welfare of fast‐growing broilers with an extended fattening period. Arch. Anim. Breed., 61, 9–16.
  • Cavusoglu, E., Petek, M., 2019. Effects of different floor materials on the welfare and behaviour of slow‐ and fast-growing broilers. Arch. Anim. Breed., 62, 335–344.
  • Clark, B., Stewart, G.B., Panzone, L.A., Kyriazakis, I., Frewer, L.J., 2016. A Systematic Review of Public Attitudes, Perceptions and Behaviours Towards Production Diseases Associated with Farm Animal Welfare. J. Agric. Environ. Ethics, 29, 455–478.
  • Coenen, A.M.L., Lankhaar, J., Lowe, J.C., McKeegan, D.E.F., 2009. Remote monitoring of electroencephalogram electrocardiogram, and behavior during controlled atmosphere stunning in broilers: Implications for welfare. Poult. Sci., 88, 10–19.
  • Cordeiro, M.B., Tinnco, I.F.F., Mesquita Filho, R.M., Sousa, F.C., 2011. Digital image analysis for young chicken’s behavior evaluation. Eng. Agric., 31, 418–426.
  • Costa, L. Pereira, D. Bueno, L., Pandorfi, H., 2012. Some aspects of chicken behavior and welfare. Rev. Bras. Ciência Avícola, 14, 159–164.
  • Curi, T.M.C., Conti, D., Vercellino, R.A., Massari, J.M., Moura, D.J., Souza, Z.M., Montanari, R., 2017. Positioning of sensors for control of ventilation systems in broiler houses: a case study. Sci. Agric., 74, 101–109.
  • Dawkins, M.S., Cain, R., Roberts, S.J., 2012. Optical flow, flock behaviour and chicken welfare. Anim. Behav., 84, 219–223. Dawkins, M.S., Cain, R., Merelie, K., Roberts, S.J., 2013. In search of the behavioural correlates of optical flow patterns in the automated assessment of broiler chicken welfare. Appl. Anim. Behav. Sci., 145, 44–50.
  • Demmers, T.G.M., Cao, Y., Gauss, S., Lowe, J.C., Parsons, D.J., Wathes, C.M., 2018. Neural predictive control of broiler chicken and pig growth. Biosyst. Eng., 173, 134–142.
  • De Jong, I.C., Hindle, V.A., Butterworth, A., Engel, B., Ferrari, P., Gunnink, H., Moya, T.P., Tuyttens, F.A.M., Reenen, C.G., 2015. Simplifying the Welfare Quality ® assessment protocol for broiler chicken welfare. Animal, 10, 117–127.
  • Ferreira, V.M.O.S., Francisco, N.S., Belloni, M., Aguirre, G.M.Z., Caldara, F.R., Nääs, I.A., Garcia, R.G., Almeida, P.I.C.L., Polycarpo, G. V., 2011. Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy densities. Rev. Bras. Cienc. Avic., 13, 113–118.
  • Fontana, I., Tullo, E., Scrase, A., Butterworth, A., 2016. Vocalisation sound pattern identification in young broiler chickens. Animal, 10, 1567–1574.
  • Fontana, I., Tullo, E., Butterworth, A., Guarino, M., 2015. An innovative approach to predict the growth in intensive poultry farming. Comput. Electron. Agric., 119, 178–183.
  • Fraser, D., 2014. The globalisation of farm animal welfare. Rev. sci. tech., 33, 33–38.
  • Giloh, M., Shinder, D., Yahav, S., 2012. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult. Sci., 91, 175–188.
  • Goldberg, A.M., 2016. Farm Animal Welfare and Human Health. Curr. Environ. Heal., 3, 313–321.
  • Gocsik, É., Brooshooft, S.D., de Jong, I.C., Saatkamp, H.W., 2016. Cost‐efficiency of animal welfare in broiler production systems: A pilot study using the Welfare Quality® assessment protocol. Agric. Syst., 146, 55–69.
  • Hindle, V.A., Lambooij, E., Reimert, H.G.M., Workel, L.D., Gerritzen, M.A., 2010. Animal welfare concerns during the use of the water bath for stunning broilers, hens, and ducks. Poult. Sci., 89, 401–412.
  • Honorato, L.A., Hötzel, M.J., Gomes, C.C.M., Silveira, I.D.B., Machado Filho, L.C.P., 2012. Particularidades relevantes da interação humano‐animal para o bem‐estar e produtividade de vacas leiteiras. Ciência Rural, 42, 332–339.
  • Jukan, A., Masip‐Bruin, X., Amla, N., 2017. Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review. ACM Comput. Surv., 50, 1–27.
  • Kashiha, M., Pluk, A., Bahr, C., Vranken, E., Berckmans, D., 2013. Development of an early warning system for a broiler house using computer vision. Biosyst. Eng., 116, 36–45.
  • Kaukonen, E., Norring, M., Valros, A., 2016. Effect of litter quality on foot pad dermatitis, hock burns and breast blisters in broiler breeders during the production period. Avian Pathol., 45, 667–673.
  • Kittelsen, K.E., Moe, R.O., Hoel, K., Kolbjørnsen, Ø., Nafstad, O., Granquist, E.G., 2017. Comparison of flock characteristics, journey duration and pathology between fl ocks with a normal and a high percentage of broilers ‘dead‐on‐arrival’ at abattoirs. Animal, 11, 2301–2308.
  • Kristensen, H.H., Cornou, C., 2011. Automatic detection of deviations in activity levels in groups of broiler chickens ‐ A pilot study. Biosyst. Eng., 109, 369–376.
  • Lewis, N.J., Hurnik, J.F., 1990. Locomotion of broiler chickens in floor pens. Poult. Sci., 69, 1087–1093.
  • Lin, T., Shah, S.B., Wang‐Li, L., Oviedo‐Rondón, E.O., Post, J., 2016. Development of MOS sensor‐based NH3 monitor for use in poultry houses. Comput. Electron. Agric., 127, 708–715.
  • McKeegan, D.E.F., Reimert, H.G.M., Hindle, V.A., Boulcott, P., Sparrey, J.M., Wathes, C.M., Demmers, T.G.M., Gerritzen, M.A., 2013. Physiological and behavioral responses of poultry exposed to gas‐filled high expansion foam. Poult. Sci., 92, 1145–1154.
  • Mehdizadeh, S., Garcia, R.G., Abe, J.M., 2018. Paraconsistent logic used for estimating the gait score of broiler chickens. Biosyst. Eng., 173, 115–123.
  • Miele, M., Veissier, I., Evans, A., Botreau, R. 2011. Animal welfare: establishing a dialogue between science and society. Anim. Welf., 20, 103–117.
  • Minka, N.S., Ayo, J.O., 2010. Physiological responses of food animals to road transportation stress. African J. Biotechnol., 9, 6601–6613.
  • Moe, R.O., Bohlin, J., Flø, A., Vasdal, G., Stubsjøen, S.M., 2017. Hot chicks, cold feet. Physiol. Behav., 179, 42– 48. Montis, A., Pinna, A., Barra, M., Vranken, E., 2013. Analysis of poultry eating and drinking behavior by software eYeNamic. J. Agric. Eng., 44, 166–172.
  • Moura, D.J., Nääs, I.A., Alves, E.C.S., Carvalho, T.M., Vale, M.M., Lima, K.A.O., 2008. Noise analysis to evaluate chick thermal comfort. Sci. Agric., 65, 438–443.
  • Moura, D.J., Nääs, I.A., Pereira, D.F., Silva, R.B.T.R., Camargo, G.A., 2006. Animal welfare concepts and strategy for poultry production: A review. Rev. Bras. Cienc. Avic., 8, 137–148.
  • Naas, I.A., Sonoda, L.T., Romanini, C.E.B., Morello, G.M., Neves, H.A.F., Baracho, M.S., Souza, S.R.L.S., Menezes, A.G., Mollo Neto, M., Moura, D.J., 2008. Morphological Asymmetry and Broiler Welfare. Brazilian J. Poult. Sci., 10, 209–213.
  • Naas, I.A., Baracho, M.D.S., Salgado, D.D., Sonoda, L.T., Carvalho, V.R.C., Moura, D.J., Paz, I.C.L.A., 2009. Broilers’ toes asymmetry and walking ability assesment [Assimetria dos pés de frangos de corte e medida de habilidade locomotora]. Eng. Agric., 29, 538–546.
  • Naas, I.A., Paz, I.C.L.A., Baracho, M.S., Menezes, A.G., Lima, K.A.O., Bueno, L.G.F., Mollo Neto, M., de Carvalho, V.C., Almeida, I.C.L., Souza, A.L., 2010. Assessing locomotion deficiency in broiler chicken. Sci. Agric., 67, 129–135.
  • Nascimento, G.R., Naas, I.A., Baracho, M.S., Pereira, D.F., Neves, D.P., 2014. Infrared thermography in the estimation of thermal comfort of broilers. Rev. Bras. Eng. Agric. E Ambient., 18, 658–663.
  • Nascimento, G.R., Pereira, D.F., Naas, I.A., Rodrigues, L.H.A., 2011. Thermal comfort fuzzy index for broiler chickens Eng. Agric., 31, 219–229.
  • OECD‐FAO, 2019. Agricultural Outlook 2019‐2028, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations: Rome.
  • Roberts, S.J., Cain, R., Dawkins, M.S., 2012. Prediction of welfare outcomes for broiler chickens using Bayesian regression on continuous optical flow data. J. R. Soc. Interface, 9, 3436–3443.
  • Rushen, J., Chapinal, N., Passillé, A.M., 2012. Automated monitoring of behavioural‐based animal welfare indicators. Anim. Welf., 21, 339–350.
  • Shields, S.J., Raj, A.B.M. A Critical Review of Electrical Water‐Bath Stun Systems for Poultry Slaughter and Recent Developments in Alternative Technologies. J. Appl. Anim. Welf. Sci. 2010, 13, 281–299.
  • Silvera, A.M., Knowles, T.G., Butterworth, A., Berckmans, D., Vranken, E., Blokhuis, H.J. Lameness assessment with automatic monitoring of activity in commercial broiler flocks. Poult. Sci. 2017, 96, 2013–2017.
  • Stadig, L.M., Ampe, B., Rodenburg, T.B., Reubens, B., Maselyne, J., Zhuang, S., Criel, J., Tuyttens, F.A.M., 2018. An automated positioning system for monitoring chickens’ location: Accuracy and registration success in a free‐range area. Appl. Anim. Behav. Sci., 201, 31–39.
  • Stadig, L.M., Rodenburg, T.B., Ampe, B., Reubens, B., Tuyttens, F.A.M., 2018. An automated positioning system for monitoring chickens’ location: Effects of wearing a backpack on behaviour, leg health and production. Appl. Anim. Behav. Sci., 198, 83–88.
  • Steenfeldt, S., Sørensen, P., Nielsen, B.L., 2019. Effects of choice feeding and lower ambient temperature on feed intake, growth, foot health, and panting of fast‐ and slow‐growing broiler strains. Poult. Sci., 98, 503– 513.
  • Taylor, P.S., Hemsworth, P.H., Groves, P.J., Gebhardt‐Henrich, S.G., Rault, J.‐L., 2017. Ranging behaviour of commercial free‐range broiler chickens 1: Factors related to flock variability. Animals, 7, 1–14.
  • Taylor, P.S., Hemsworth, P.H., Groves, P.J., Gebhardt‐Henrich, S.G., Rault, J.‐L., 2017. Ranging behaviour of commercial free‐range broiler chickens 2: Individual variation. Animals, 7, 1–9.
  • Toppel, K., Kaufmann, F., Sch, H., Gauly, M., Andersson, R., 2019. Effect of pH‐lowering litter amendment on animal‐based welfare indicators and litter quality in a European commercial broiler husbandry. Poult. Sci., 98, 1181–1189.
  • Tullo, E., Fontana, I., Peña Fernandez, A., Vranken, E., Norton, T., Berckmans, D., Guarino, M., 2017. Association between environmental predisposing risk factors and leg disorders in broiler chickens. J. Anim. Sci., 95, 1512–1520.
  • Tuyttens, F.A.M., Federici, J.F., Vanderhasselt, R.F., Goethals, K., Duchateau, L., Sans, E.C.O., Molento, C.F.M., 2015. Assessment of welfare of Brazilian and Belgian broiler flocks using the Welfare Quality protocol. Poult. Sci., 94, 1758–1766.
  • Vanderhasselt, R.F., Sprenger, M., Duchateau, L., Tuyttens, F.A.M., 2013. Automated assessment of footpad dermatitis in broiler chickens at the slaughter‐line: Evaluation and correspondence with human expert Sustainability 2020, 12, Poult. Sci., 92, 12–18.
  • Van Hertem, T., Rooijakkers, L., Berckmans, D., Peña Fernández, A., Norton, T., Berckmans, D., Vranken, E., 2017. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Comput. Electron. Agric., 138, 1–10.
  • Van Hertem, T., Norton, T., Berckmans, D., Vranken, E., 2018. Predicting broiler gait scores from activity monitoring and flock data. Biosyst. Eng., 173, 93–102.
  • Vanhonacker, F., Tuyttens, F.A.M., Verbeke, W., 2016. Belgian citizens’ and broiler producers’ perceptions of broiler chicken welfare in Belgium versus Brazil. Poult. Sci., 95, 1555–1563.
  • Vizzier Thaxton, Y., Christensen, K.D., Mench, J.A., Rumley, E.R., Daugherty, C., Feinberg, B., Parker, M., Siegel, P., Scanes, C.G., 2016. Animal welfare challenges for today and tomorrow. Poult. Sci., 95, 2198–2207.
  • Youssef, A., Exadaktylos, V., Berckmans, D., 2015. Towards real‐time control of chicken activity in a ventilated chamber. Biosyst. Eng., 135, 31–43.
  • Yunes, M.C., Von Keyserlingk, M.A.G., Hötzel, M.J., 2017. Brazilian citizens’ opinions and attitudes about farm animal production systems. Animals, 7, 1–15.
  • Webster, A.J.F., 2009. The virtuous bicycle: a delivery vehicle for improved farm animal welfare. Animal Welfare, 18, 141–147.
  • Welfare Quality ® 2009. Welfare Quality® assessment protocol for poultry (broilers, laying hens), Welfare Quality® Consortium. Lelystad, Netherlands.
  • Wilhelmsson, S., Yngvesson, J., Jönsson, L., Gunnarsson, S., Wallenbeck, A., 2019. Welfare Quality ® assessment of a fast‐growing and a slower‐growing broiler hybrid, reared until 10 weeks and fed a low‐protein, highprotein or mussel‐ meal diet. Livest. Sci., 219, 71–79.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production
Journal Section Reviews
Authors

Arda Aydın 0000-0001-9670-5061

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Aydın, A. (2020). Etlik Piliç Refahının Tespitinde Yeni Nesil Teknolojik Sistemlerin Önemi. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 1(2), 47-60.

Lapseki Vocational School Applied Research Journal is free. No fee is charged for articles to be published.