Review
BibTex RIS Cite

Küresel Isınma ve İklim Değişikliğinin Böcekler Üzerindeki Olası Etkileri

Year 2021, Volume: 2 Issue: 4, 67 - 75, 31.12.2021

Abstract

Öz
Küresel ısınma nedeniyle ortaya çıkan iklim değişikliği tüm dünyanın en önemli ekolojik sorunlarının başında gelmektedir. Böcekler de dahil birçok hayvanın biyolojisi ve davranışı etkilenebileceği gibi onların yaşam alanlarında ve beslenme alışkanlıklarında da değişimler ortaya çıkabilmektedir. Böcekler yeryüzünde bulunan canlı türlerinin büyük bir çoğunluğunu oluşturması nedeniyle küresel iklim değişikliklerinden en fazla etkilenmesi beklenen canlı gruplarının başında gelmektedir. Ekosistemde küresel ısınma ve iklim değişikliği etkisiyle ortaya çıkan sıcaklık artışı böceklerin gelişme sürelerinin normalden çok daha kısa sürmesine ve üreme kabiliyetlerinde artışa neden olacaktır. Yeryüzünde mevcut böcek türlerinin bir kısmını yok ederken, önemli bir kısmının da yaşam alanlarını etkileyerek popülasyonlarda göç davranışının artmasına neden olacaktır. Bu da mevcut zararlıların yanında daha önce bölgede görülmeyen böcek türlerinin tarım arazilerinde ortaya çıkmasıyla zararlı sayılarında artışa bağlı olarak tarımsal ürünlerde ekonomik kayıpların ortaya çıkmasına neden olacaktır. Tüm bu etkilerin yanında özellikle tarımsal üretim ve biyoçeşitlilik için büyük öneme sahip olan arıların da yaşam alanlarında önemli olumsuz etkiler meydana geleceği öngörülmektedir. Bu çalışmada küresel ısınma ve iklim değişikliğinin ekosistemde meydana getirdiği etkilerin biyoçeşitlilik ve tarımsal üretimin ana unsurlarından olan böceklerdeki olası etkileri ve gelecekte ortaya çıkabilecek sonuçları değerlendirilmiştir.

References

  • Amarasekare, K. G. ve Edelson, J., 2004. Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology. 97 (5), 1595-1602.
  • Awmack, C. S., Woodcock, C.M. ve Harrington, R., 1997. Climate change may increase vulnerability of aphids to natural enemies. Ecological Entomology. 22, 366-368.
  • Ayres, M.P. and Lombardero, M.J., 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 262: 263-286.
  • Baer, H. and Singer, M. 2012. Global warming and the political ecology of health: emerging crises and systemic solutions. Walnut Creek, California. Left Coast Press. 1st Edition. ISBN 9781598743548.
  • Baier, J., Pennerstorfer, A. and Schopf, P., 2007. A comprehensive phenology model of Ips typographus (L.) (Col. Scolytidae) as a tool for hazard rating of bark beetle infestation. Forest Ecol. and Mgt. 171-186.
  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown,V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Pres, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology. 8: 1-16.
  • Calderone, N.W., 2012. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009, PLoS ONE 7(5): e37235.
  • Cannon, R.J.C., 1998. The implications of predicted climate change for insect pests in the UK, with emphasis on non- indigenous species. Global Change Biology. 4: 785-796.
  • Chen, C.-C. ve McCarl, B. A., 2001. Pesticide usage as ınfluenced by climate: a statistical ınvestigation. Climatic Change, 50 (1-2), 475-487.
  • Chen, D.H., Ye, G.Y., Yang, C.Q., Chen, Y. and Wu, Y.K. 2005. The effect of high temperature on the insecticidal properties of bt cotton, environ. Exp. Bot. 53: 333-342.
  • Chen, F.J., Wu, G., Ge, F., Parajulee, M.N., Shrestha, R.B., 2005a. Effects of Elevated CO2 and Transgenic Bt Cotton on Plant Chemistry, Performance, and Feeding of an İnsect Herbivore, The Cotton Bollworm, Entomol. Exp. Appl, 115: 341-350.
  • Coviella, C.E., Trumble, J., 1998. Effects of elevated atmospheric carbon dioxide on insect- plan interactions. Conservation Biology, 4(13), 700-712.
  • Dellal, İ., McCarl, B.A., Butt, T., 2011. The economic assessment of climate change on Turkish agriculture. Journal of Environmental Protection and Ecology, 12 (1):376-385.
  • Dobson, A., 2009. Climate variability, global change, immunity, and he dynamics of infectious diseases. Ecology. 90 (4): 920-927.
  • Dong, H.Z., Li, W.J., 2007. Variability of endotoxin expression in Bt transgenic cotton. J. Agron. & Crop Sci. 193: 21-29.
  • Fuhrer, J., 2003. Agroecosytem responses to combinations of elevated CO2, ozone, and global climate change, agriculture, Ecosystem and Environment, 9,7: 1-20.
  • Harrington, R., Fleming, R.A., Woiwod, P., 2001. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted?. Agricultural and Forest Entomology, 3: 233-240.
  • Heong, K.L., Y.H. Song, S. Pimsamarn, R. Zhang and Bae, S.D., 1995. Global Warming and Rice Arthropod Communities In: Climate Change and Rice. (Eds. Peng, S., Ingram, K.T., Neue, H.U. and Ziska, L.H.), Springer publications, Berlin, 327-335.
  • Hulme, M., Doherty, R., Ngara, T., New, M., Lister, D., 2001. African climate change: 1900–2100, Climate Res., 17: 145-168.
  • Johnson, C.G., Taylor, L.R., 1957. Periodism and energy summation with special reference to light rhythms in aphids, J. Experimental Biol. 34: 209-221.
  • Johnson, S.N., Gregory, P.J., McNicol, J.W., Oodally, Y., Zhang, X., Murray, P.J., 2010. Effects of soil conditions and drought on egg hatching and larval survival of the clover root weevil (Sitona lepidus). Appld. Soil Ecol. 44: 75-79.
  • Jönsson, A.M., Appelberg, G., Harding, S., Bärring, L., 2009. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle. Ips typographus. Glob Chang Biol. 15: 486- 499.
  • Kaiser, J., 1996. Pests overwhelm Bt cotton crop. Science, 273: 423.
  • Kiritani, K., 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popln. Ecol. 48: 5 12.
  • Klein, A.M., Vaissiere, BE., Cane. JH., Steffan-Dewenter. I., Cunningham. S.A., Kremen, C., Tscharntke. T., 2007. Importance of pollinators in changing landscapes for world crops. proc. r. soc. b. biol. sci., 274: 303–313.
  • Lange, H., Okland, B., Krokene, P., 2006. Thresholds in the life cycle of the spruce bark beetle under climate change. Int. J. for Complex Systems. 1648: 1-10.
  • Mattson, W. J., Haack, R. A., 1987. The role of drought in outbreaks of plant-eating. Insects. Bioscience. 37, 110-119.
  • Musser F. R., Shelton A. M., 2005. The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Management Science. 61:508–510.
  • Ostfeld, R.S., 2009. Climate change and the distribution and intensity of infectious diseases. Ecology. 90 (4): 903-905.
  • Özbek, H., 2003. Türkiye’de arılar ve tozlaşma sorunu. Uludağ Arıcılık Dergisi. 3: 41-44.
  • Özgen, İ., Karsavuran, Y., 2009. Küresel iklim değişikliklerinin böcekler açısından değerlendirilmesi. Harran Üniversitesi Ziraat Fakültesi Dergisi. 13, 51-61.
  • Pandey, A.K., Tripathi, C.P.M., 2008. Effect of temperature on the development, fecundity, progeny sex ratio and life-table of 2 Campoletis chlorideae, an endo-larval parasitoid of the pod borer, Helicoverpa armigera. Bio Control. 53: 461-471.
  • Pareek, A., Meena, B., Sharma, S., Tetarwal, M., Kalyan, R. ve Meena, B., 2017. Impact of climate change on insect pests and their management strategies. Climate Change and Sustainable Agriculture. 253-286.
  • Petzoldt, C. and Seaman, A., 2007. Climate change effects on insects and pathogens, climate change and agriculture: promoting practical and profitable responses. New York State Agricultural Extension Station. Geneva. https://www.panna.org/sites/default/files/CC%20insects&pests.pdf [Erişim Tarihi: 08.06.2021].
  • Reiter, P. 2008. Climate change and mosquito-borne disease: knowing the horse before hitching the cart. Rev Sci Tech. 27 (2): 383-398.
  • Rouault, G., J.N. Candau, F. Lieutier, L.M. Nageleisen, J.C. Martin and N. Warzee, 2006. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. of Forest Sci., 63: 613-624.
  • Rubenstein, D. I. 1992. The greenhouse effect and changes in animal behavior: effects on social structure and life-history strategies. In Global Warming and Biological Diversity. 14, 180-192.
  • Samways, M. J., 2005. Global climate change and synergistic impacts. insect diversity conservation. Cambridge University Pres. New York. 136-151.
  • Sharma, H.C. 2010. Global warming and climate change: impact on arthropod biodiversity, pest management, and food security. In R. Thakur, P.R. Gupta and A.K. Verma (eds.), Souven. Natn. Symp. Perspectives and Challenges of Integrated Pest Management for Sustainable Agriculture. Nauni, Solan. Himachal Pradesh. pp 1– 14.
  • Sharma, H.C., Mukuru, S.Z., Manyasa, E., and Were, J. 1999. Breakdown of resistance to Sorghum midge, Stenodiplosis sorghicola, Euphytica. 109:131-140.
  • Srivastava, C.P., N. Joshi and T.P. Trivedi, 2010. Forecasting of Helicoverpa armigera population and impact of climate change, Ind. J. Agrl. Sci., 80(1): 3-10.
  • Staley, J.T., C.J. Hodgson, S.R. Mortimer, M.D. Morecroft, G.J. Masters, V.K. Brown and M.E. Taylor, 2007. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur. J. Soil Biol., 43: 189-198.
  • Switanek, M., Brodschneider, R., Crailsheim, K., Truhetz, H., 2015. Impacts of Austrian climate variability on honey bee mortality. In EGU General Assembly Conference Abstracts. 17, 9575.
  • Şimşek, Z., Kondur, Y., Şimşek, M., 2009. Küresel iklim değişikliğinin kabuk böcekleri üzerinde beklenen etkileri. Biyoloji Bilimleri Araştırma Dergisi. 3 (2): 149-157.
  • Tirado, R., Simon, G., Johnston, P., 2013. A review of factors that put pollinators and agriculture in europe at risk. Greenpeace Research Laboratories Technical Report. 44p.
  • Tobin, P.C, S. Nagarkatti, G. Loeab and M.C. Saunders, 2008. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biol., 14: 951-957.
  • Topal, E., Özsoy, N., Şahinler, N. 2016. Küresel ısınma ve arıcılığın geleceği. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. 21(1):112-120.
  • Ward, N.L., Masters, G.J., 2007. Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biology. 13: 1-11.

The Potential Impacts of the Global Warming and Climate Change on Insects

Year 2021, Volume: 2 Issue: 4, 67 - 75, 31.12.2021

Abstract

Climate change caused by global warming is one of the most important ecological problems of the world. The biology and behavior of many animals, including insects, may be affected, as well as changes in their habitats and feeding habits. Since insects constitute the vast majority of living species on earth, they are one of the living groups that are expected to be affected the most by climate changes. The increase in temperature in the ecosystem due to the effect of global warming and climate change will cause the development period of insects to take much shorter than normal and increase their reproductive abilities. While it will destroy some of the existing insect species on the earth, it will affect the habitats of a significant part of it, causing an increase in migration behavior in populations. This will cause economic losses in agricultural products due to the increase in the number of pests as the insect species, which were not seen in the region before, along with the existing pests appear in the agricultural lands. In addition to all these effects, it is predicted that there will be significant negative impacts on the habitats of bees, which have great importance especially for agricultural production and biodiversity. In this study, the possible effects and future consequences of the effects of global warming and climate change on biodiversity and insects, which are the main elements of agricultural production, will be evaluated.

References

  • Amarasekare, K. G. ve Edelson, J., 2004. Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology. 97 (5), 1595-1602.
  • Awmack, C. S., Woodcock, C.M. ve Harrington, R., 1997. Climate change may increase vulnerability of aphids to natural enemies. Ecological Entomology. 22, 366-368.
  • Ayres, M.P. and Lombardero, M.J., 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 262: 263-286.
  • Baer, H. and Singer, M. 2012. Global warming and the political ecology of health: emerging crises and systemic solutions. Walnut Creek, California. Left Coast Press. 1st Edition. ISBN 9781598743548.
  • Baier, J., Pennerstorfer, A. and Schopf, P., 2007. A comprehensive phenology model of Ips typographus (L.) (Col. Scolytidae) as a tool for hazard rating of bark beetle infestation. Forest Ecol. and Mgt. 171-186.
  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown,V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Pres, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology. 8: 1-16.
  • Calderone, N.W., 2012. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009, PLoS ONE 7(5): e37235.
  • Cannon, R.J.C., 1998. The implications of predicted climate change for insect pests in the UK, with emphasis on non- indigenous species. Global Change Biology. 4: 785-796.
  • Chen, C.-C. ve McCarl, B. A., 2001. Pesticide usage as ınfluenced by climate: a statistical ınvestigation. Climatic Change, 50 (1-2), 475-487.
  • Chen, D.H., Ye, G.Y., Yang, C.Q., Chen, Y. and Wu, Y.K. 2005. The effect of high temperature on the insecticidal properties of bt cotton, environ. Exp. Bot. 53: 333-342.
  • Chen, F.J., Wu, G., Ge, F., Parajulee, M.N., Shrestha, R.B., 2005a. Effects of Elevated CO2 and Transgenic Bt Cotton on Plant Chemistry, Performance, and Feeding of an İnsect Herbivore, The Cotton Bollworm, Entomol. Exp. Appl, 115: 341-350.
  • Coviella, C.E., Trumble, J., 1998. Effects of elevated atmospheric carbon dioxide on insect- plan interactions. Conservation Biology, 4(13), 700-712.
  • Dellal, İ., McCarl, B.A., Butt, T., 2011. The economic assessment of climate change on Turkish agriculture. Journal of Environmental Protection and Ecology, 12 (1):376-385.
  • Dobson, A., 2009. Climate variability, global change, immunity, and he dynamics of infectious diseases. Ecology. 90 (4): 920-927.
  • Dong, H.Z., Li, W.J., 2007. Variability of endotoxin expression in Bt transgenic cotton. J. Agron. & Crop Sci. 193: 21-29.
  • Fuhrer, J., 2003. Agroecosytem responses to combinations of elevated CO2, ozone, and global climate change, agriculture, Ecosystem and Environment, 9,7: 1-20.
  • Harrington, R., Fleming, R.A., Woiwod, P., 2001. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted?. Agricultural and Forest Entomology, 3: 233-240.
  • Heong, K.L., Y.H. Song, S. Pimsamarn, R. Zhang and Bae, S.D., 1995. Global Warming and Rice Arthropod Communities In: Climate Change and Rice. (Eds. Peng, S., Ingram, K.T., Neue, H.U. and Ziska, L.H.), Springer publications, Berlin, 327-335.
  • Hulme, M., Doherty, R., Ngara, T., New, M., Lister, D., 2001. African climate change: 1900–2100, Climate Res., 17: 145-168.
  • Johnson, C.G., Taylor, L.R., 1957. Periodism and energy summation with special reference to light rhythms in aphids, J. Experimental Biol. 34: 209-221.
  • Johnson, S.N., Gregory, P.J., McNicol, J.W., Oodally, Y., Zhang, X., Murray, P.J., 2010. Effects of soil conditions and drought on egg hatching and larval survival of the clover root weevil (Sitona lepidus). Appld. Soil Ecol. 44: 75-79.
  • Jönsson, A.M., Appelberg, G., Harding, S., Bärring, L., 2009. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle. Ips typographus. Glob Chang Biol. 15: 486- 499.
  • Kaiser, J., 1996. Pests overwhelm Bt cotton crop. Science, 273: 423.
  • Kiritani, K., 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popln. Ecol. 48: 5 12.
  • Klein, A.M., Vaissiere, BE., Cane. JH., Steffan-Dewenter. I., Cunningham. S.A., Kremen, C., Tscharntke. T., 2007. Importance of pollinators in changing landscapes for world crops. proc. r. soc. b. biol. sci., 274: 303–313.
  • Lange, H., Okland, B., Krokene, P., 2006. Thresholds in the life cycle of the spruce bark beetle under climate change. Int. J. for Complex Systems. 1648: 1-10.
  • Mattson, W. J., Haack, R. A., 1987. The role of drought in outbreaks of plant-eating. Insects. Bioscience. 37, 110-119.
  • Musser F. R., Shelton A. M., 2005. The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Management Science. 61:508–510.
  • Ostfeld, R.S., 2009. Climate change and the distribution and intensity of infectious diseases. Ecology. 90 (4): 903-905.
  • Özbek, H., 2003. Türkiye’de arılar ve tozlaşma sorunu. Uludağ Arıcılık Dergisi. 3: 41-44.
  • Özgen, İ., Karsavuran, Y., 2009. Küresel iklim değişikliklerinin böcekler açısından değerlendirilmesi. Harran Üniversitesi Ziraat Fakültesi Dergisi. 13, 51-61.
  • Pandey, A.K., Tripathi, C.P.M., 2008. Effect of temperature on the development, fecundity, progeny sex ratio and life-table of 2 Campoletis chlorideae, an endo-larval parasitoid of the pod borer, Helicoverpa armigera. Bio Control. 53: 461-471.
  • Pareek, A., Meena, B., Sharma, S., Tetarwal, M., Kalyan, R. ve Meena, B., 2017. Impact of climate change on insect pests and their management strategies. Climate Change and Sustainable Agriculture. 253-286.
  • Petzoldt, C. and Seaman, A., 2007. Climate change effects on insects and pathogens, climate change and agriculture: promoting practical and profitable responses. New York State Agricultural Extension Station. Geneva. https://www.panna.org/sites/default/files/CC%20insects&pests.pdf [Erişim Tarihi: 08.06.2021].
  • Reiter, P. 2008. Climate change and mosquito-borne disease: knowing the horse before hitching the cart. Rev Sci Tech. 27 (2): 383-398.
  • Rouault, G., J.N. Candau, F. Lieutier, L.M. Nageleisen, J.C. Martin and N. Warzee, 2006. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. of Forest Sci., 63: 613-624.
  • Rubenstein, D. I. 1992. The greenhouse effect and changes in animal behavior: effects on social structure and life-history strategies. In Global Warming and Biological Diversity. 14, 180-192.
  • Samways, M. J., 2005. Global climate change and synergistic impacts. insect diversity conservation. Cambridge University Pres. New York. 136-151.
  • Sharma, H.C. 2010. Global warming and climate change: impact on arthropod biodiversity, pest management, and food security. In R. Thakur, P.R. Gupta and A.K. Verma (eds.), Souven. Natn. Symp. Perspectives and Challenges of Integrated Pest Management for Sustainable Agriculture. Nauni, Solan. Himachal Pradesh. pp 1– 14.
  • Sharma, H.C., Mukuru, S.Z., Manyasa, E., and Were, J. 1999. Breakdown of resistance to Sorghum midge, Stenodiplosis sorghicola, Euphytica. 109:131-140.
  • Srivastava, C.P., N. Joshi and T.P. Trivedi, 2010. Forecasting of Helicoverpa armigera population and impact of climate change, Ind. J. Agrl. Sci., 80(1): 3-10.
  • Staley, J.T., C.J. Hodgson, S.R. Mortimer, M.D. Morecroft, G.J. Masters, V.K. Brown and M.E. Taylor, 2007. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur. J. Soil Biol., 43: 189-198.
  • Switanek, M., Brodschneider, R., Crailsheim, K., Truhetz, H., 2015. Impacts of Austrian climate variability on honey bee mortality. In EGU General Assembly Conference Abstracts. 17, 9575.
  • Şimşek, Z., Kondur, Y., Şimşek, M., 2009. Küresel iklim değişikliğinin kabuk böcekleri üzerinde beklenen etkileri. Biyoloji Bilimleri Araştırma Dergisi. 3 (2): 149-157.
  • Tirado, R., Simon, G., Johnston, P., 2013. A review of factors that put pollinators and agriculture in europe at risk. Greenpeace Research Laboratories Technical Report. 44p.
  • Tobin, P.C, S. Nagarkatti, G. Loeab and M.C. Saunders, 2008. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biol., 14: 951-957.
  • Topal, E., Özsoy, N., Şahinler, N. 2016. Küresel ısınma ve arıcılığın geleceği. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. 21(1):112-120.
  • Ward, N.L., Masters, G.J., 2007. Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biology. 13: 1-11.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Reviews
Authors

İpek Yaşar 0000-0002-1447-6232

Şahin Kök 0000-0002-1092-8596

İsmail Kasap 0000-0002-0015-4558

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 2 Issue: 4

Cite

APA Yaşar, İ., Kök, Ş., & Kasap, İ. (2021). Küresel Isınma ve İklim Değişikliğinin Böcekler Üzerindeki Olası Etkileri. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 2(4), 67-75.

Lapseki Vocational School Applied Research Journal is free. No fee is charged for articles to be published.