Research Article
BibTex RIS Cite

KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA

Year 2018, , 247 - 258, 01.12.2018
https://doi.org/10.30797/madencilik.480083

Abstract

Kazı arını sınırı optimizasyonu, yeraltı maden planlama ve tasarım sürecindeki optimizasyon
çalışmalarının başlangıç noktası olarak düşünülmekte ve mümkün olan en iyi kazı arını düzenini;
madenin işletme, jeoteknik ve fiziksel kısıtlamalarını hesaba katarak seçip, ekonomik kârın en
üst düzeye çıkarılmasına odaklanmaktadır. Son 20-25 yıldır dikkat çekmeye başlayan bu alan
için çok sayıda algoritma ve teknik geliştirilmiş olmakla birlikte, bunlar açık ocak madenciliği
için yapılan çalışmalarının oldukça gerisinde kalmıştır. Bu makale, öncelikle kazı arını sınır
optimizasyonu için günümüze kadar geliştirilen yöntemler üzerine ayrıntılı bir literatür analizi
yapmakta, ardından bir cevher kütlesi modeli üzerinde seçilen bir algoritmanın uygulanmasını
göstermektedir. Bu çalışmadan elde edilen sonuçlar, şimdiye kadar kazı arını sınırlarının
optimizasyonu için geliştirilmiş yöntemlerin hiçbirinin, henüz üç boyutta (3D) tam optimum
sonuçları garanti edemediğini, çoğunun sezgisel birer yöntem olarak kaldığını göstermektedir.

References

  • Alford, C., 1995. Optimisation in Underground Mine Design, 25th Application of Computers and Operations Research in The Mineral Industry, The Australian Institute of Mining and Metallurgy, pp. 213-218.
  • Ataee-Pour, M., 2000. A Heuristic Algorithm to Optimise Stope Boundaries, PhD thesis, University of Wollongong, Australia, pp. (2) 24-60, (3) 18-36.
  • Ataee-Pour, M., 2005. A Critical Survey of the Existing Stope Layout Optimization Techniques, Journal of Mining Science, 41(5):447-466.
  • Bai, X., Marcotte, D., Simon, R., 2013. Underground Stope Optimization with Network Flow Method, Computer and Geoscience, (52), pp. 361–371.
  • Brazil, M., Thomas, D.A., Weng, J.F., 1998. Gradient- Constrained Minimal Steiner Trees, DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, 40: 23–38.
  • Brazil, M., Rubinstein, J. H., Thomas, D. A., Weng J. F., Wormald, N. C., 2001. Gradient-Constrained Minimum Networks. I. Fundamentals, Journal of Global Optimization, 21 (2):139-155.
  • Brazil, M., Lee D.H., Rubinstein, J. H., Thomas, D.A., Weng, J.F., , 2002. Optimisation in the Design of Underground Mine Access, The Transactions of the South African Institute of Electrical Engineers, 93(2): 97-103.
  • Brazil, M., Thomas, D.A., Weng, J.F., Lee, D.H., Rubinstein, J.H., 2005. Cost Optimization for Underground Mining Networks, Optimization and Engineering, 6(2): 241–256.
  • Brazil, M., Thomas, D.A., 2007. Network Optimisation for the Design of Underground Mines, Networks ,49: 40–50.
  • Carlyle, M., Eaves, 2001. Underground Planning at Stillwater Mining Company, Interfaces, 31(4): 50-60.
  • Cawrse, I, 2001. Multiple Pass Floating Stope Process, 4th Biennial Strategic Mine Planning Conference, The Australasian Institute of Mining and Metallurgy, Melbourne, pp. 87-94.
  • Cawrse, I., 2007. Multiple Pass Floating Stope Process, Strategic Mine Planning Conference, Perth, Australia, pp. 87–94.
  • Cheimanoff, N. M., Deliac, E. P., Mallet, J. L., 1989. GEOCAD : An Alternative CAD and Artificial Intelligence Tool that Helps Moving From Geological Resources to Mineable Reserves, 21st Application of Computers and Operations Research in the Mineral Industry : 21st International APCOM Symposium, pp. 471-478.
  • Deraisme, J., De Fouquet, C., Fraisse, H, 1984. Geostatistical Orebody Model for Computer Optimization of Profits from Different Underground Mining Methods, 18th APCOM Symposium London, England, pp. 583-590.
  • Erdoğan, G., 2017. Yeraltı Ocaklarında Bilgisayar Destekli Maden Tasarımı ve Kazı Arınlarının Optimizasyonu, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi.
  • Erdogan, G., Cigla, M., Topal, E., Yavuz, M., 2017. Implementation and Comparison of Four Stope Boundary Optimisation Algorithms in an Existing Underground Mine, International Journal of Mining, Reclamation and Environment 31 (6), 389-403
  • Kuchta M., Newman, A., Topal, E, 2004. Implementing a Production Schedule at LKAB’s Kiruna Mine, Interfaces, 34(2): 124-134.
  • Lee, D. H., 1989. Industrial Case Studies of Steiner Trees, NATO Advanced Research Workshop on Topological Network Design, Denmark.
  • Little J., 2007. A New Approach to Using Mixed-Integer Programming for Scheduling Optimisation in Sublevel Stope Mining, Bachelor thesis, University of Queensland, Brisbane.
  • Little J., Knights P., Topal E., 2013. Integrated Optimization of Underground Mine Design and Scheduling, Journal of the South African Institute of Mining and Metallurgy, 113, pp. 775–785.
  • Nehring, M., Topal E., 2006. Production Schedule Optimisation in Underground Hard Rock Mining Using Mixed Integer Programming, Australasian Institute of Mining and Metallurgy, Project Evaluation, Melbourne, Australia, pp. 169-175
  • Nehring, M., Topal, E., Kizil, M., Knights, P., 2012. Integrated Short- and Medium-Term Underground Mine Production Scheduling, The Journal Of The Southern African Institute Of Mining And Metallurgy, 112, pp 365-378.
  • O’Sullivan D., Newman A., 2014. Optimization- based Heuristics for Underground Mine Scheduling, European Journal of Operational Research, 241, pp. 248–259.
  • Ovanic, J., Young, D. S., 1995. Economic Optimisation of Stope Geometry using Separable Programming with Special Branch and Bound Techniques, Third Canadian Conference on Computer Applications in the Mineral Industry, McGill University, Montreal,pp. 129-35.
  • Riddle, JM., 1977. A Dynamic Programming Solution of a Block Caving Mine Layout, Proceedings The 14th APCOM Symposium, Society of Mining Engineers-American Institute of Mining, Metallurgy, and Petroleum Engineers, New York,pp. 767- 780.
  • Sandanayake, D., 2014. Stope Boundary Optimisation in Underground Mining Based on a Heuristic Approach, PhD Thesis, Curtin University. Sandanayake D, Topal E, Asad M., 2015a. Designing an Optimal Stope Layout for Underground Mining Based on a Heuristic Algorithm, International Journal of Mining Science and Technology 25, pp. 767–772.
  • Sandanayake D, Topal E, Asad M., 2015b. A Heuristic Approach to Optimal Design of an Underground Mine Stope Layout, Applied Soft Computing, 30, pp. 595–603.
  • Serra, J., 1982. Image Analysis and Mathematical Morphology, Academic Press, New York. Sens, J., Topal, E., 2009. A New Algorithm for Stope Boundary Optimisation, Ausimm New Leaders Conference, 2009(4), pp. 25-28.
  • Topal E., 2003. Advanced Underground Mine Scheduling Using Mixed Integer Programming, PhD thesis, Colorado School of Mines. Topal, E., Sens, J., 2010. A New Algorithm for Stope Boundary Optimization, Journal of Coal Science & Engineering, 16 (2), pp. 113-119.
  • Trout L.P., 1995, Underground Mine Production Scheduling Using Mixed Integer Programming, Proceedings in the 25th International APCOM Symposium, The Australasian Institute of Mining and Metallurgy, Melbourne, pp. 395-400.
  • Wang, H., Webber, T., 2012. An Innovation of Practical Underground Stope Design Optimization and Cut-off Grade Calculation, SME Annual Meeting, WA.
  • Winkler, B., 1996. Using MILP to Optimize Period Fix Costs in Complex Mine Sequencing and Scheduling Problems, APCOM Symposium, Pennsylvania State University, pp. 441–446.
Year 2018, , 247 - 258, 01.12.2018
https://doi.org/10.30797/madencilik.480083

Abstract

References

  • Alford, C., 1995. Optimisation in Underground Mine Design, 25th Application of Computers and Operations Research in The Mineral Industry, The Australian Institute of Mining and Metallurgy, pp. 213-218.
  • Ataee-Pour, M., 2000. A Heuristic Algorithm to Optimise Stope Boundaries, PhD thesis, University of Wollongong, Australia, pp. (2) 24-60, (3) 18-36.
  • Ataee-Pour, M., 2005. A Critical Survey of the Existing Stope Layout Optimization Techniques, Journal of Mining Science, 41(5):447-466.
  • Bai, X., Marcotte, D., Simon, R., 2013. Underground Stope Optimization with Network Flow Method, Computer and Geoscience, (52), pp. 361–371.
  • Brazil, M., Thomas, D.A., Weng, J.F., 1998. Gradient- Constrained Minimal Steiner Trees, DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, 40: 23–38.
  • Brazil, M., Rubinstein, J. H., Thomas, D. A., Weng J. F., Wormald, N. C., 2001. Gradient-Constrained Minimum Networks. I. Fundamentals, Journal of Global Optimization, 21 (2):139-155.
  • Brazil, M., Lee D.H., Rubinstein, J. H., Thomas, D.A., Weng, J.F., , 2002. Optimisation in the Design of Underground Mine Access, The Transactions of the South African Institute of Electrical Engineers, 93(2): 97-103.
  • Brazil, M., Thomas, D.A., Weng, J.F., Lee, D.H., Rubinstein, J.H., 2005. Cost Optimization for Underground Mining Networks, Optimization and Engineering, 6(2): 241–256.
  • Brazil, M., Thomas, D.A., 2007. Network Optimisation for the Design of Underground Mines, Networks ,49: 40–50.
  • Carlyle, M., Eaves, 2001. Underground Planning at Stillwater Mining Company, Interfaces, 31(4): 50-60.
  • Cawrse, I, 2001. Multiple Pass Floating Stope Process, 4th Biennial Strategic Mine Planning Conference, The Australasian Institute of Mining and Metallurgy, Melbourne, pp. 87-94.
  • Cawrse, I., 2007. Multiple Pass Floating Stope Process, Strategic Mine Planning Conference, Perth, Australia, pp. 87–94.
  • Cheimanoff, N. M., Deliac, E. P., Mallet, J. L., 1989. GEOCAD : An Alternative CAD and Artificial Intelligence Tool that Helps Moving From Geological Resources to Mineable Reserves, 21st Application of Computers and Operations Research in the Mineral Industry : 21st International APCOM Symposium, pp. 471-478.
  • Deraisme, J., De Fouquet, C., Fraisse, H, 1984. Geostatistical Orebody Model for Computer Optimization of Profits from Different Underground Mining Methods, 18th APCOM Symposium London, England, pp. 583-590.
  • Erdoğan, G., 2017. Yeraltı Ocaklarında Bilgisayar Destekli Maden Tasarımı ve Kazı Arınlarının Optimizasyonu, Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi.
  • Erdogan, G., Cigla, M., Topal, E., Yavuz, M., 2017. Implementation and Comparison of Four Stope Boundary Optimisation Algorithms in an Existing Underground Mine, International Journal of Mining, Reclamation and Environment 31 (6), 389-403
  • Kuchta M., Newman, A., Topal, E, 2004. Implementing a Production Schedule at LKAB’s Kiruna Mine, Interfaces, 34(2): 124-134.
  • Lee, D. H., 1989. Industrial Case Studies of Steiner Trees, NATO Advanced Research Workshop on Topological Network Design, Denmark.
  • Little J., 2007. A New Approach to Using Mixed-Integer Programming for Scheduling Optimisation in Sublevel Stope Mining, Bachelor thesis, University of Queensland, Brisbane.
  • Little J., Knights P., Topal E., 2013. Integrated Optimization of Underground Mine Design and Scheduling, Journal of the South African Institute of Mining and Metallurgy, 113, pp. 775–785.
  • Nehring, M., Topal E., 2006. Production Schedule Optimisation in Underground Hard Rock Mining Using Mixed Integer Programming, Australasian Institute of Mining and Metallurgy, Project Evaluation, Melbourne, Australia, pp. 169-175
  • Nehring, M., Topal, E., Kizil, M., Knights, P., 2012. Integrated Short- and Medium-Term Underground Mine Production Scheduling, The Journal Of The Southern African Institute Of Mining And Metallurgy, 112, pp 365-378.
  • O’Sullivan D., Newman A., 2014. Optimization- based Heuristics for Underground Mine Scheduling, European Journal of Operational Research, 241, pp. 248–259.
  • Ovanic, J., Young, D. S., 1995. Economic Optimisation of Stope Geometry using Separable Programming with Special Branch and Bound Techniques, Third Canadian Conference on Computer Applications in the Mineral Industry, McGill University, Montreal,pp. 129-35.
  • Riddle, JM., 1977. A Dynamic Programming Solution of a Block Caving Mine Layout, Proceedings The 14th APCOM Symposium, Society of Mining Engineers-American Institute of Mining, Metallurgy, and Petroleum Engineers, New York,pp. 767- 780.
  • Sandanayake, D., 2014. Stope Boundary Optimisation in Underground Mining Based on a Heuristic Approach, PhD Thesis, Curtin University. Sandanayake D, Topal E, Asad M., 2015a. Designing an Optimal Stope Layout for Underground Mining Based on a Heuristic Algorithm, International Journal of Mining Science and Technology 25, pp. 767–772.
  • Sandanayake D, Topal E, Asad M., 2015b. A Heuristic Approach to Optimal Design of an Underground Mine Stope Layout, Applied Soft Computing, 30, pp. 595–603.
  • Serra, J., 1982. Image Analysis and Mathematical Morphology, Academic Press, New York. Sens, J., Topal, E., 2009. A New Algorithm for Stope Boundary Optimisation, Ausimm New Leaders Conference, 2009(4), pp. 25-28.
  • Topal E., 2003. Advanced Underground Mine Scheduling Using Mixed Integer Programming, PhD thesis, Colorado School of Mines. Topal, E., Sens, J., 2010. A New Algorithm for Stope Boundary Optimization, Journal of Coal Science & Engineering, 16 (2), pp. 113-119.
  • Trout L.P., 1995, Underground Mine Production Scheduling Using Mixed Integer Programming, Proceedings in the 25th International APCOM Symposium, The Australasian Institute of Mining and Metallurgy, Melbourne, pp. 395-400.
  • Wang, H., Webber, T., 2012. An Innovation of Practical Underground Stope Design Optimization and Cut-off Grade Calculation, SME Annual Meeting, WA.
  • Winkler, B., 1996. Using MILP to Optimize Period Fix Costs in Complex Mine Sequencing and Scheduling Problems, APCOM Symposium, Pennsylvania State University, pp. 441–446.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Gamze Erdogan Erten 0000-0001-9481-4256

Mahmut Yavuz This is me

Publication Date December 1, 2018
Submission Date March 26, 2018
Published in Issue Year 2018

Cite

APA Erten, G. E., & Yavuz, M. (2018). KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA. Bilimsel Madencilik Dergisi, 57(4), 247-258. https://doi.org/10.30797/madencilik.480083
AMA Erten GE, Yavuz M. KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA. Madencilik. December 2018;57(4):247-258. doi:10.30797/madencilik.480083
Chicago Erten, Gamze Erdogan, and Mahmut Yavuz. “KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA”. Bilimsel Madencilik Dergisi 57, no. 4 (December 2018): 247-58. https://doi.org/10.30797/madencilik.480083.
EndNote Erten GE, Yavuz M (December 1, 2018) KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA. Bilimsel Madencilik Dergisi 57 4 247–258.
IEEE G. E. Erten and M. Yavuz, “KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA”, Madencilik, vol. 57, no. 4, pp. 247–258, 2018, doi: 10.30797/madencilik.480083.
ISNAD Erten, Gamze Erdogan - Yavuz, Mahmut. “KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA”. Bilimsel Madencilik Dergisi 57/4 (December 2018), 247-258. https://doi.org/10.30797/madencilik.480083.
JAMA Erten GE, Yavuz M. KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA. Madencilik. 2018;57:247–258.
MLA Erten, Gamze Erdogan and Mahmut Yavuz. “KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA”. Bilimsel Madencilik Dergisi, vol. 57, no. 4, 2018, pp. 247-58, doi:10.30797/madencilik.480083.
Vancouver Erten GE, Yavuz M. KAZI ARINI SINIRI OPTİMİZASYONU İÇİN GELİŞTİRİLEN YÖNTEMLER VE ÖRNEK BİR UYGULAMA. Madencilik. 2018;57(4):247-58.

22562 22561 22560 22590 22558