Research Article
BibTex RIS Cite

PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS

Year 2018, Volume: 57 Issue: 1, 25 - 33, 01.03.2018
https://doi.org/10.30797/madencilik.422863

Abstract

Schmidt hammer hardness (RL) provides a quick and inexpensive measure of surface hardness
that is widely used for estimating the mechanical properties of rock material such as strength,
sawability, cuttability and drillability. In this study, RL
as predictors, which is thought to be a
useful, simple and inexpensive test particularly for performance prediction of chain saw machine
(CSM), is suggested. This study aims to estimate CSM performance from RL
values of rocks.
For this purpose, rock cutting and rock mechanics tests were performed on twenty four different
natural stone samples having different strength values. In this study, Chain Saw Penetration
Index (CSPI) has been predicted based on RL
which is one of the two models previously used for
performance prediction of CSMs. The RL
values were correlated with UCS, CSPI and SE using
simple regression analysis with SPSS 15.0. As a result of this evaluation, RL
has a strong relation
with UCS and SE. It is statistically proved that the model based on RL
for predicting CSPI is valid
and reliable for performance prediction of CSM. Results of this study indicated that the CSPI of
CSMs could be reliably predicted by empirical model using RL

References

  • Bilgin, N., Yazici, S., Eskikaya, S., 1996. A Model to Predict the Performance of Roadheader and Impact Hammers in Tunnel Drivages. In: Proc. Eurock ‘96 Rotterdam: Balkema, 715-720.
  • Bilgin, N., Dincer, T., Copur, H., 2002. The Performance Prediction of Impact Hammers from Schmidt Hammer Rebound Values in Istanbul Metro Tunnel Drivages. Tunnelling and Underground Space Technology, July 17 (3), 237-247.
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Feridunoglu, C., Dincer, T., Serter, A., 2006. Cutting Performance of Chain Saw Machines in Quarries and Laboratory. In: Proc. of the 15th Int. Symp. on Mine Planning and Equipment Selection, Turin, Italy, September, 1324- 1329.
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Duzyol, I., 2007. Full-scale Linear Cutting Tests Towards Performance Prediction of Chain Saw Machines. In: Proc. of the 20th Int. Mining Congress Exhibition (IMCET 2007), Ankara, Turkey, June, 161-169.
  • Copur, H., 2010. Linear Stone Cutting Tests with Chisel Tools for Identification of Cutting Principles and Predicting Performance of Chain Saw Machines. Int. J. Rock Mech. Min. Sci., 47, 1, 104-120.
  • Copur, H., Balci, C., Tumac, D., Bilgin, N., 2011a. Field and Laboratory Studies on Natural Stones Leading to Empirical Performance Prediction of Chain Saw Machines. Int. J. Rock Mech. Min. Sci., 48, 2, 269-282.
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Avunduk, E., Demirel, S., Simsek, A., 2011b. An Empirical Model for Predicting the Performance of Chain Saw Machines. In: Proc. of the 3rd Mining Machinery Symposium, Izmir, Turkey, May, 55-65 (in Turkish).
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Avunduk, E., Saracoglu, M.A., Serter, A, 2011c. A Deterministic Model for Predicting and Optimizing Performance of Chain Saw Machines. In: Proc. of the 22nd World Mining Congress and Expo, Istanbul, Turkey, September, 175- 181.
  • Dursun, A.E, 2012. Cuttability of Limestone Strata at North-West of Konya City. PhD. Thesis, The Graduate School of Natural and Applied Science, Selçuk University, Konya, Turkey, p.286 (In Turkish).
  • Ersoy, A., Atici, U., 2005. Specific Energy Prediction for Circular Diamond Saw in Cutting Different Types of Rocks Using Multivariable Linear Regression Analysis. J. Min. Sci., 41, 240-260.
  • Gokceoglu, C., 2002. A Fuzzy Triangular Chart to Predict the Uniaxial Compressive Strength of Ankara Agglomerates from Their Petrographic Composition. Eng Geol, 66, 39-51.
  • Gokceoglu, C., Zorlu, K., 2004. A Fuzzy Model to Predict the Uniaxial Compressive Strength and the Modulus of Elasticity of a Problematic Rock. Engineering Applications of Artificial Intelligence, 17 (1), 61-72.
  • Goktan, R.M., Gunes, N., 2005. A Comparative Study of Schmidt Hammer Testing Procedures with Reference to Rock Cutting Machine Performance Prediction. Int. J. Rock Mech. Min. Sci., 42, 466-477.
  • Howarth, D.F., Adamson, W.R., Berndt, J.R., 1986. Correlation of Model Tunnel Boring and Drilling Machine Performances with Rock Properties. Int. J. Rock Mech. Min. Sci., 23, 171-175.
  • ISRM, 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. In: Ulusay, R., Hudson, J.A. (Eds.), ISRM Turkish National Group, Ankara, Turkey.
  • Kahraman, S., Fener, M., Gunaydin, O., 2004. Predicting the Sawability of Carbonate Rocks Using Multiple Curvilinear Regression Analysis. Int. J. Rock Mech. Min. Sci., 41, 1123-1131.
  • Mancini, R., Cardu, M., Fornaro, M., Linares, M., Peila, D., 1992. Analysis and Simulation of Stone Cutting with Microtools. In: Proc. of the 3rd Int. GeoEngineering Conference, Torino, Italy, September, 227-236.
  • Mancini, R., Linares, M., Cardu, M., Fornaro, M., Bobbio, M., 1994. Simulation of the Operation of a Rock Chain Cutter on Statistical Models of Inhomogeneous Rocks. In: Proc. of the 3rd Int. Symp. on Mine Planning and Equipment Selection, Istanbul, Turkey, October, 461-468.
  • Mancini, R., Cardu, M., Fornaro, M., Toma, C.M., 2001. The Current Status of Marble Chain Cutting. In: Proc. of the 9th Int. Symp. on Mine Planning and Equipment Selection, New Delhi, India, November, 151-158.
  • McFeat-Smith, I., Fowell, R.J., 1977. Correlation of Rock Properties and The Cutting Performance of Tunneling Machines. In Proc. of a Conference on Rock Engineering, CORE-UK, The University of Newcastle upon Tyne, 581-602.
  • McFeat-Smith, I., Fowell, R.J., 1979. The Selection and Application of Roadheaders for Rock Tunneling. Proc. 4th Rapid Excavation and Tunnelling Conference, Atlanta, AIME, New York, 261-279.
  • Poole, R.W., Farmer, I.W., 1978. Geotechnical Factors Affecting Tunnelling Machine Performance in Coal Measures Rock. Tunnels and Tunnelling, 27-30.
  • Primavori, P., 2006. Uses for The Chain Saw. Marmo Mach. Int., 53, 80-102.
  • Rostami, J., Ozdemir, L., Neil, D., 1994. Performance Prediction, A Key Issue in Mechanical Hard Rock Mining. Mining Engineering, November, 1264-1267.
  • Sariisik, A., Sariisik, G., 2010. Efficiency Analysis of Armed-Chained Cutting Machines in Block Production in Travertine Quarries. The Journal of Southern African Institute of Mining and Metallurgy, 110:473–480.
  • Sariisik A., Sariisik G., 2013. Investigation of The Cutting Performance of the Natural Stone Block Production in Quarries with Armed Chain Cutting Machine. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. 227:155–165.
  • Tumac, D., 2014. Predicting The Performance of Chain Saw Machines Based on Shore Scleroscope Hardness. Rock. Mech. Rock. Eng., 47, 703-715.
  • Yurdakul, M., Akdaş, H., 2012. Prediction of Specific Cutting Energy for Large Diameter Circular Saws During Natural Stone Cutting. Int. J. Rock Mech. Min. Sci., 53, 38-44.

SCHMIDT ÇEKİCİ SERTLİĞİ KULLANILARAK ZİNCİRLİ KESME MAKİNELERİNİN PERFORMANS TAHMİNİ

Year 2018, Volume: 57 Issue: 1, 25 - 33, 01.03.2018
https://doi.org/10.30797/madencilik.422863

Abstract

Schmidt çekici sertliği (RL
) kayaların dayanım, kesilebilirlik (doğrusal ve dairesel) ve delinebilirlik
gibi mekanik özelliklerini belirlemek için yaygın olarak kullanılan ucuz ve kolaylık sağlayan bir yüzey
sertliği ölçüsüdür. Bu çalışmada, özellikle zincirli kesme makinesinin performans tahmininde,
kullanışlı, basit ve ucuz bir test olan Schmidt çekici sertliği değişken olarak önerilmiştir. Bu
çalışmada amaç, kayaların Schmidt sertliklerinden zincirli kesme makinelerinin performansını
tahmin etmektir. Bunun için, farklı dayanım özelliklerine sahip 24 farklı doğal taş numunesi
üzerinde kesme ve kaya mekaniği testleri yapılmıştır. Bu çalışmada, zincirli kesme makinelerinin
performans tahmini için daha önce kullanılan iki modelden biri olan Zincirli Kesme Penetrasyon
İndeksi (CSPI) RL
baz alınarak öngörülmüştür. RL
değerleri ile tek eksenli basınç dayanımı,
zincirli kesme indeksi ve spesifik enerji değerlerinin korelasyonu SPSS 15.0 istatistik programı
kullanılarak yapılmıştır. Bu değerlendirme sonucunda; RL
değerleri ile tek eksenli basınç dayanımı
ve spesifik enerji değerleri arasında güçlü korelasyon olduğu belirlenmiştir. Buna göre; zincirli
kesme indeksini tahmin etmek için RL
’ye dayanan modelin zincirli kesme makinesinin performans
tahmini için geçerli ve güvenilir olduğu istatistiksel olarak kanıtlanmıştır. Bu çalışmanın sonuçları,
zincirli kesme makinelerinin zincirli kesme indeksini, RL
değerleri kullanılarak oluşturulan görgül
modeller ile güvenilir bir şekilde tahmin edilebileceğini göstermiştir.

References

  • Bilgin, N., Yazici, S., Eskikaya, S., 1996. A Model to Predict the Performance of Roadheader and Impact Hammers in Tunnel Drivages. In: Proc. Eurock ‘96 Rotterdam: Balkema, 715-720.
  • Bilgin, N., Dincer, T., Copur, H., 2002. The Performance Prediction of Impact Hammers from Schmidt Hammer Rebound Values in Istanbul Metro Tunnel Drivages. Tunnelling and Underground Space Technology, July 17 (3), 237-247.
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Feridunoglu, C., Dincer, T., Serter, A., 2006. Cutting Performance of Chain Saw Machines in Quarries and Laboratory. In: Proc. of the 15th Int. Symp. on Mine Planning and Equipment Selection, Turin, Italy, September, 1324- 1329.
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Duzyol, I., 2007. Full-scale Linear Cutting Tests Towards Performance Prediction of Chain Saw Machines. In: Proc. of the 20th Int. Mining Congress Exhibition (IMCET 2007), Ankara, Turkey, June, 161-169.
  • Copur, H., 2010. Linear Stone Cutting Tests with Chisel Tools for Identification of Cutting Principles and Predicting Performance of Chain Saw Machines. Int. J. Rock Mech. Min. Sci., 47, 1, 104-120.
  • Copur, H., Balci, C., Tumac, D., Bilgin, N., 2011a. Field and Laboratory Studies on Natural Stones Leading to Empirical Performance Prediction of Chain Saw Machines. Int. J. Rock Mech. Min. Sci., 48, 2, 269-282.
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Avunduk, E., Demirel, S., Simsek, A., 2011b. An Empirical Model for Predicting the Performance of Chain Saw Machines. In: Proc. of the 3rd Mining Machinery Symposium, Izmir, Turkey, May, 55-65 (in Turkish).
  • Copur, H., Balci, C., Bilgin, N., Tumac, D., Avunduk, E., Saracoglu, M.A., Serter, A, 2011c. A Deterministic Model for Predicting and Optimizing Performance of Chain Saw Machines. In: Proc. of the 22nd World Mining Congress and Expo, Istanbul, Turkey, September, 175- 181.
  • Dursun, A.E, 2012. Cuttability of Limestone Strata at North-West of Konya City. PhD. Thesis, The Graduate School of Natural and Applied Science, Selçuk University, Konya, Turkey, p.286 (In Turkish).
  • Ersoy, A., Atici, U., 2005. Specific Energy Prediction for Circular Diamond Saw in Cutting Different Types of Rocks Using Multivariable Linear Regression Analysis. J. Min. Sci., 41, 240-260.
  • Gokceoglu, C., 2002. A Fuzzy Triangular Chart to Predict the Uniaxial Compressive Strength of Ankara Agglomerates from Their Petrographic Composition. Eng Geol, 66, 39-51.
  • Gokceoglu, C., Zorlu, K., 2004. A Fuzzy Model to Predict the Uniaxial Compressive Strength and the Modulus of Elasticity of a Problematic Rock. Engineering Applications of Artificial Intelligence, 17 (1), 61-72.
  • Goktan, R.M., Gunes, N., 2005. A Comparative Study of Schmidt Hammer Testing Procedures with Reference to Rock Cutting Machine Performance Prediction. Int. J. Rock Mech. Min. Sci., 42, 466-477.
  • Howarth, D.F., Adamson, W.R., Berndt, J.R., 1986. Correlation of Model Tunnel Boring and Drilling Machine Performances with Rock Properties. Int. J. Rock Mech. Min. Sci., 23, 171-175.
  • ISRM, 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. In: Ulusay, R., Hudson, J.A. (Eds.), ISRM Turkish National Group, Ankara, Turkey.
  • Kahraman, S., Fener, M., Gunaydin, O., 2004. Predicting the Sawability of Carbonate Rocks Using Multiple Curvilinear Regression Analysis. Int. J. Rock Mech. Min. Sci., 41, 1123-1131.
  • Mancini, R., Cardu, M., Fornaro, M., Linares, M., Peila, D., 1992. Analysis and Simulation of Stone Cutting with Microtools. In: Proc. of the 3rd Int. GeoEngineering Conference, Torino, Italy, September, 227-236.
  • Mancini, R., Linares, M., Cardu, M., Fornaro, M., Bobbio, M., 1994. Simulation of the Operation of a Rock Chain Cutter on Statistical Models of Inhomogeneous Rocks. In: Proc. of the 3rd Int. Symp. on Mine Planning and Equipment Selection, Istanbul, Turkey, October, 461-468.
  • Mancini, R., Cardu, M., Fornaro, M., Toma, C.M., 2001. The Current Status of Marble Chain Cutting. In: Proc. of the 9th Int. Symp. on Mine Planning and Equipment Selection, New Delhi, India, November, 151-158.
  • McFeat-Smith, I., Fowell, R.J., 1977. Correlation of Rock Properties and The Cutting Performance of Tunneling Machines. In Proc. of a Conference on Rock Engineering, CORE-UK, The University of Newcastle upon Tyne, 581-602.
  • McFeat-Smith, I., Fowell, R.J., 1979. The Selection and Application of Roadheaders for Rock Tunneling. Proc. 4th Rapid Excavation and Tunnelling Conference, Atlanta, AIME, New York, 261-279.
  • Poole, R.W., Farmer, I.W., 1978. Geotechnical Factors Affecting Tunnelling Machine Performance in Coal Measures Rock. Tunnels and Tunnelling, 27-30.
  • Primavori, P., 2006. Uses for The Chain Saw. Marmo Mach. Int., 53, 80-102.
  • Rostami, J., Ozdemir, L., Neil, D., 1994. Performance Prediction, A Key Issue in Mechanical Hard Rock Mining. Mining Engineering, November, 1264-1267.
  • Sariisik, A., Sariisik, G., 2010. Efficiency Analysis of Armed-Chained Cutting Machines in Block Production in Travertine Quarries. The Journal of Southern African Institute of Mining and Metallurgy, 110:473–480.
  • Sariisik A., Sariisik G., 2013. Investigation of The Cutting Performance of the Natural Stone Block Production in Quarries with Armed Chain Cutting Machine. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. 227:155–165.
  • Tumac, D., 2014. Predicting The Performance of Chain Saw Machines Based on Shore Scleroscope Hardness. Rock. Mech. Rock. Eng., 47, 703-715.
  • Yurdakul, M., Akdaş, H., 2012. Prediction of Specific Cutting Energy for Large Diameter Circular Saws During Natural Stone Cutting. Int. J. Rock Mech. Min. Sci., 53, 38-44.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Arif Emre Dursun This is me 0000-0003-2001-7814

Publication Date March 1, 2018
Submission Date October 16, 2017
Published in Issue Year 2018 Volume: 57 Issue: 1

Cite

APA Dursun, A. E. (2018). PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS. Bilimsel Madencilik Dergisi, 57(1), 25-33. https://doi.org/10.30797/madencilik.422863
AMA Dursun AE. PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS. Mining. March 2018;57(1):25-33. doi:10.30797/madencilik.422863
Chicago Dursun, Arif Emre. “PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS”. Bilimsel Madencilik Dergisi 57, no. 1 (March 2018): 25-33. https://doi.org/10.30797/madencilik.422863.
EndNote Dursun AE (March 1, 2018) PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS. Bilimsel Madencilik Dergisi 57 1 25–33.
IEEE A. E. Dursun, “PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS”, Mining, vol. 57, no. 1, pp. 25–33, 2018, doi: 10.30797/madencilik.422863.
ISNAD Dursun, Arif Emre. “PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS”. Bilimsel Madencilik Dergisi 57/1 (March 2018), 25-33. https://doi.org/10.30797/madencilik.422863.
JAMA Dursun AE. PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS. Mining. 2018;57:25–33.
MLA Dursun, Arif Emre. “PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS”. Bilimsel Madencilik Dergisi, vol. 57, no. 1, 2018, pp. 25-33, doi:10.30797/madencilik.422863.
Vancouver Dursun AE. PERFORMANCE PREDICTION OF CHAIN SAW MACHINES USING SCHMIDT HAMMER HARDNESS. Mining. 2018;57(1):25-33.

22562 22561 22560 22590 22558