Research Article
BibTex RIS Cite

STATISTICAL QUALITY CONTROL WITH FUZZY LOGIC METHOD USING TOTAL COLOR DIFFERENCE PARAMETER: AN APPLICATION IN ALUMINUM PRODUCTION PLANT

Year 2019, Volume: 58 Issue: 3, 219 - 228, 01.09.2019
https://doi.org/10.30797/madencilik.620806

Abstract

A fuzzy mean and range control charts were used to monitor the production process. Fuzzy

control charts were validated through a case study at the aluminum production company by

collecting data from the factory and comparing it to the traditional Shewhart control charts which

have been already applied by the factory for monitoring the process. The results reveal that

the proposed fuzzy control charts could detect abnormal shifts in the production process more

accurately than the traditional Shewhart control charts, as they had used more information from

the process.

In this study, fuzzy statistical quality control application was applied to Eti Aluminum Co. aluminum

production plant. Total color difference parameter (ΔE) data were studied using fuzzy observation

on an aluminum production plant. For this purpose, color parameters of the aluminum production

plant were evaluated using triangular fuzzy number (TFN) and fuzzy process capability indices

(PCIs). Process capability analysis was carried out to determine whether there was sufficient of

the production process with the information obtained. The Cp, Cpu and Cpl indices were 1.267,

1.263, 1.257; 1.419, 1.414, 1.408 and 1.115, 1.111, 1.106, respectively. According to these values,

it has been determined that the processes meet the needs.

References

  • Akın B., 1996. İşletmelerde İstatistik Proses Kontrol. Bilim Teknik Yayınevi, İstanbul, s. 150.
  • Aksu, S., 2001. Kırmızı Çamur Bileşenlerinin Hidroklorik Asit Çözeltisindeki Çözünürlükleri, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi.
  • Alizadeh, H.M., Ghomi, S.M.T.F., 2011. Fuzzy Development of Mean and Range Control Charts Using Statistical Properties of Different Representative Values. Journal of Intelligent and Fuzzy Systems, 22, 253-265.
  • Arslan, V., 2017. Bakır Konsantre Tesislerinde Kontrol Kartlarının ve Çok Boyutlu Ölçekleme Analizinin Uygulanması. Çukurova Üniversitesi, Mühendislik Fakültesi Dergisi, 32, 1, 99-103.
  • Aslangiray, A., Akyüz, G., 2014. Bulanık Kontrol Grafikleri: Tekstil Firmasında Bir Uygulama. İstanbul Üniversitesi, İşletme Fakültesi Dergisi, 43, 1, 70-89.
  • Aydın, B., 2002. AA-2014 Alaşımında Yaşlandırma Isıl İşleminin İşlenebilirlik Üzerindeki Etkilerinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans tezi.
  • Bayça, S.U., Kısık, H., 2015. Bazik Liç İle Boksit Atığından Alüminyum Hidroksit Ektraksiyonu. Celal Bayar Üniversitesi, Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, 20, 1-12.
  • Bircan, H., Özcan, S., 2003. Excel Uygulamalı Kalite Kontrol. Yargı Yayınevi, Ankara, s. 375.
  • Burns, R.G., 1993. Mineralogical Applications of Crystal Field Theory. Cambridge Topics in Minerals Physics and Chemistry, 2nd Edition, Cambridge Univ., Cambridge.
  • Carlsson, C., Fullér, R., 2001. On Possibilistic Mean Value and Variance of Fuzzy Numbers. Fuzzy Sets and Systems, 122, 315-326.
  • Chen, W.F., Lui, E.M., 2005. Handbook of Structural Engineering. CRC Press, New York.
  • Christidis, G.E., Sakellariou, N., Repouskou, E.M., 2004. Influence of Organic Matter and Iron Oxides on The Colour Properties of A Micritic Limestone from Kefalonia. Bulletin of The Geological Society of Greece, 36, 72-79.
  • Dwight, J., 2002. Aluminum Design and Construction. Taylor and Francis, New York.
  • Elevli S., Behdioğlu S., 2006. İstatistiksel Proses Kontrolü Teknikleri Ile Kömür Kalitesindeki Değişkenliğin Belirlenmesi. Madencilik Dergisi, 45, 3, 19-26.
  • Erginel, N., 2008. Fuzzy Individual and Moving Range Control Charts with α-cuts. Journal of Intelligent & Fuzzy Systems, 19, 373-383.
  • Fairchild, M.D., 1998. Color Appearance Models. Reading, Mass: Addison Wesley Longman, Inc. Gülbay, M., Kahraman, C., 2008. Bulanık Kontrol Diyagramı Modellerinin Geliştirilmesi: Direkt Bulanık Yaklaşım. İTÜ Mühendislik Dergisi, 7, 2, 95-105.
  • Gülbay, M., Kahraman, C., 2007. An Alternative Approach to Fuzzy Control Charts: Direct Fuzzy Approach. Information Sciences, 177, 1463-1480.
  • Gülbay, M., Kahraman, C., 2006. Development of Fuzzy Process Control Charts and Fuzzy Unnatural Pattern Analyses. Computational Statistics&Data Analysis, 51, 434-451.
  • Gülbay, M., Kahraman, C., Ruan, D., 2004. α-Cuts Fuzzy Control Charts for Linguistic Data. International Journal of Intelligent Systems, 19, 1173-1196.
  • Günay, D., 2006. Alüminyum Sektörü Hakkında Bir Değerlendirme. Türkiye Kalkınma Bankası A.Ş., Ekonomik ve Sosyal Araştırmalar Müdürlüğü, GA-06- 07-08, s. 50.
  • IAI, 2018. International Aluminum Institute, http://www. world-aluminium.org/statistics/primary-aluminiumproduction/# map
  • Kahraman, C., Kaya, I., 2011. Fuzzy Estimations of Process Incapability Index. Proceedings of The World Congress on Engineering, London.
  • Kanagawa, A., Tamaki, F., Ohta, H., 1993, Control Charts for Process Average and Variability Based on Linguistic Data. International Journal of Production Research, 31, 913-922.
  • Kaya, I., Kahraman, C., 2011. Process Capability Analyses Based on Fuzzy Measurements and Fuzzy Control Charts. Expert Systems with Applications, 38, 3172-3184.
  • Kaya, I., Kahraman, C., 2010. Development of Fuzzy Process Accuracy Index for Decision Making Problems. Information Sciences, 180, 861-872.
  • Khademi, M., Amirzadeh, V., 2014. Fuzzy Rules For Fuzzy X and R Control Charts. Iranian Journal of Fuzzy Systems, 11, 55-66.
  • Kissel, J.R., Ferry, R.L., 2002. Aluminum Structures, A Guide To Their Specifications and Design. 2nd ed., John Wiley & Sons, New York.
  • Kotz, S., Johnson, N., 2002. Process Capability Indices-A Review 1992-2000. Journal of Quality Technology, 34, 2-19.
  • Montgomery, D.C., 2009. Statistical Quality Control: A Modern Introduction. 6th Edition, John Wiley & Sons, New York.
  • Murray, H., 2002. Industrial Clays Case Study Report of the Mining Minerals and Sustainable Development Project. International Institute for Environment and Development and World Business Council for Sustainable Development, 64.
  • Raz, T., Wang, J.H., 1990. Probabilistic and Membership Approach in The Construction of Control Charts for Linguistic Data. Production Planning Control, 1, 147- 157.
  • Sharafudeen, R., 2012. The Manufacturing Process Parameters Affecting Color and Brightness of TiO2 Pigment. International Journal of Industrial Chemistry, 3, 1-7.
  • Shu, M.H., Wu, H.C., 2011. Fuzzy X-Bar and R Control Charts: Fuzzy Dominance Approach. Computers & Industrial Engineering, 613, 676-686.
  • Şentürk, S., 2017. Construction of Fuzzy C Control Charts Based on Fuzzy Rule Method. Anadolu University Journal of Science and Technology AApplied Sciences and Engineering, 18, 563-572.
  • Şentürk, S., Erginel, N., Kaya, I., Kahraman, C., 2011. Design of Fuzzy Control Chart. Journal of Multiple Valued-Logic and Soft Computing, 5, 459-473.
  • Uçurum, M., 2017. Fuzzy Statistical Process Control of A Calcite Grinding Plant Using Total Color Difference Parameter (ΔE). IOSR Journal of Engineering, 7, 7-22.
  • Uslu, E., Çatar, R., Çolak, M., 2017. Si ve Cu Elementlerini İçeren Alüminyum Döküm Alaşımlarının Korozyon Özelliklerinin Belirlenmesi ve Karşılaştırılması. Engineering Sciences, 12, 3, 133- 140.
  • Wang, J.H., Raz, T., 1990. On The Construction of Control Charts Using Linguistic Variables. The International Journal of Production Research, 28, 477- 487.
  • Wang, J.H., Raz, T., 1988. Applying Fuzzy Set Theory in The Development of Quality Control Chart. Proceeding of The International of Production Research, 28, 30-35.
  • Zabihinpour, S.M., Ariffin, M.K.A., Tang S.H., Azfanizam A.S., 2014. Fuzzy Based Approach for Monitoring The Mean and Range of The Products Quality. Journal of Applied Environmental & Biological Sciences, 4, 1-7.
  • Zadeh, L.A., 1965. Fuzzy Sets, Information and Control. 8, 338-353.

TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA

Year 2019, Volume: 58 Issue: 3, 219 - 228, 01.09.2019
https://doi.org/10.30797/madencilik.620806

Abstract

Üretim sürecini izlemek için bulanık bir ortalama ve değişim aralığı kontrol çizelgeleri kullanılmıştır.
Bulanık kontrol grafikleri, fabrikadan veri toplayarak ve bunu prosesin izlenmesi için fabrika
tarafından zaten uygulanmış olan geleneksel Shewhart kontrol grafikleri ile karşılaştırarak,
alüminyum üretim tesisindeki bir vaka çalışması ile doğrulanmıştır. Sonuçlar, önerilen bulanık
kontrol grafiklerinin, üretim sürecindeki anormal değişimleri, geleneksel Shewhart kontrol
listelerinden daha doğru bir şekilde tespit edebildiğini, çünkü süreçten daha fazla bilgi
kullandıklarını ortaya koymaktadır.
Bu çalışmada, Eti Alüminyum A.Ş. alüminyum üretim tesisinde bulanık mantık istatistiksel kalite
kontrol uygulaması yapılmıştır. Toplam renk farkı parametresi (ΔE) verileri, alüminyum üretim
tesisinde bulanık gözlem yöntemi kullanılarak incelenmiştir. Bu amaçla, alüminyum üretim tesisi
ürünlerinin renk parametreleri, ilgili formüller yardımıyla hesaplanan bulanık üçgen sayılar (TFN)
ve bulanık süreç yeterlilik indeksleri (PCI) kullanılarak değerlendirilmiştir. Elde edilen bilgilerle
üretim sürecinin yeterli olup olmadığını tespit etmek amacıyla proses yeterlilik analizi yapılmıştır.
Cp, Cpu ve Cpl indisleri sırası ile 1,267, 1,263, 1,257; 1,419, 1,414, 1,408 ve 1,115, 1,111, 1,106
bulunmuştur. Bu değerlere göre prosesin ihtiyaçları karşıladığı tespit edilmiştir.

References

  • Akın B., 1996. İşletmelerde İstatistik Proses Kontrol. Bilim Teknik Yayınevi, İstanbul, s. 150.
  • Aksu, S., 2001. Kırmızı Çamur Bileşenlerinin Hidroklorik Asit Çözeltisindeki Çözünürlükleri, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi.
  • Alizadeh, H.M., Ghomi, S.M.T.F., 2011. Fuzzy Development of Mean and Range Control Charts Using Statistical Properties of Different Representative Values. Journal of Intelligent and Fuzzy Systems, 22, 253-265.
  • Arslan, V., 2017. Bakır Konsantre Tesislerinde Kontrol Kartlarının ve Çok Boyutlu Ölçekleme Analizinin Uygulanması. Çukurova Üniversitesi, Mühendislik Fakültesi Dergisi, 32, 1, 99-103.
  • Aslangiray, A., Akyüz, G., 2014. Bulanık Kontrol Grafikleri: Tekstil Firmasında Bir Uygulama. İstanbul Üniversitesi, İşletme Fakültesi Dergisi, 43, 1, 70-89.
  • Aydın, B., 2002. AA-2014 Alaşımında Yaşlandırma Isıl İşleminin İşlenebilirlik Üzerindeki Etkilerinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Yüksek lisans tezi.
  • Bayça, S.U., Kısık, H., 2015. Bazik Liç İle Boksit Atığından Alüminyum Hidroksit Ektraksiyonu. Celal Bayar Üniversitesi, Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, 20, 1-12.
  • Bircan, H., Özcan, S., 2003. Excel Uygulamalı Kalite Kontrol. Yargı Yayınevi, Ankara, s. 375.
  • Burns, R.G., 1993. Mineralogical Applications of Crystal Field Theory. Cambridge Topics in Minerals Physics and Chemistry, 2nd Edition, Cambridge Univ., Cambridge.
  • Carlsson, C., Fullér, R., 2001. On Possibilistic Mean Value and Variance of Fuzzy Numbers. Fuzzy Sets and Systems, 122, 315-326.
  • Chen, W.F., Lui, E.M., 2005. Handbook of Structural Engineering. CRC Press, New York.
  • Christidis, G.E., Sakellariou, N., Repouskou, E.M., 2004. Influence of Organic Matter and Iron Oxides on The Colour Properties of A Micritic Limestone from Kefalonia. Bulletin of The Geological Society of Greece, 36, 72-79.
  • Dwight, J., 2002. Aluminum Design and Construction. Taylor and Francis, New York.
  • Elevli S., Behdioğlu S., 2006. İstatistiksel Proses Kontrolü Teknikleri Ile Kömür Kalitesindeki Değişkenliğin Belirlenmesi. Madencilik Dergisi, 45, 3, 19-26.
  • Erginel, N., 2008. Fuzzy Individual and Moving Range Control Charts with α-cuts. Journal of Intelligent & Fuzzy Systems, 19, 373-383.
  • Fairchild, M.D., 1998. Color Appearance Models. Reading, Mass: Addison Wesley Longman, Inc. Gülbay, M., Kahraman, C., 2008. Bulanık Kontrol Diyagramı Modellerinin Geliştirilmesi: Direkt Bulanık Yaklaşım. İTÜ Mühendislik Dergisi, 7, 2, 95-105.
  • Gülbay, M., Kahraman, C., 2007. An Alternative Approach to Fuzzy Control Charts: Direct Fuzzy Approach. Information Sciences, 177, 1463-1480.
  • Gülbay, M., Kahraman, C., 2006. Development of Fuzzy Process Control Charts and Fuzzy Unnatural Pattern Analyses. Computational Statistics&Data Analysis, 51, 434-451.
  • Gülbay, M., Kahraman, C., Ruan, D., 2004. α-Cuts Fuzzy Control Charts for Linguistic Data. International Journal of Intelligent Systems, 19, 1173-1196.
  • Günay, D., 2006. Alüminyum Sektörü Hakkında Bir Değerlendirme. Türkiye Kalkınma Bankası A.Ş., Ekonomik ve Sosyal Araştırmalar Müdürlüğü, GA-06- 07-08, s. 50.
  • IAI, 2018. International Aluminum Institute, http://www. world-aluminium.org/statistics/primary-aluminiumproduction/# map
  • Kahraman, C., Kaya, I., 2011. Fuzzy Estimations of Process Incapability Index. Proceedings of The World Congress on Engineering, London.
  • Kanagawa, A., Tamaki, F., Ohta, H., 1993, Control Charts for Process Average and Variability Based on Linguistic Data. International Journal of Production Research, 31, 913-922.
  • Kaya, I., Kahraman, C., 2011. Process Capability Analyses Based on Fuzzy Measurements and Fuzzy Control Charts. Expert Systems with Applications, 38, 3172-3184.
  • Kaya, I., Kahraman, C., 2010. Development of Fuzzy Process Accuracy Index for Decision Making Problems. Information Sciences, 180, 861-872.
  • Khademi, M., Amirzadeh, V., 2014. Fuzzy Rules For Fuzzy X and R Control Charts. Iranian Journal of Fuzzy Systems, 11, 55-66.
  • Kissel, J.R., Ferry, R.L., 2002. Aluminum Structures, A Guide To Their Specifications and Design. 2nd ed., John Wiley & Sons, New York.
  • Kotz, S., Johnson, N., 2002. Process Capability Indices-A Review 1992-2000. Journal of Quality Technology, 34, 2-19.
  • Montgomery, D.C., 2009. Statistical Quality Control: A Modern Introduction. 6th Edition, John Wiley & Sons, New York.
  • Murray, H., 2002. Industrial Clays Case Study Report of the Mining Minerals and Sustainable Development Project. International Institute for Environment and Development and World Business Council for Sustainable Development, 64.
  • Raz, T., Wang, J.H., 1990. Probabilistic and Membership Approach in The Construction of Control Charts for Linguistic Data. Production Planning Control, 1, 147- 157.
  • Sharafudeen, R., 2012. The Manufacturing Process Parameters Affecting Color and Brightness of TiO2 Pigment. International Journal of Industrial Chemistry, 3, 1-7.
  • Shu, M.H., Wu, H.C., 2011. Fuzzy X-Bar and R Control Charts: Fuzzy Dominance Approach. Computers & Industrial Engineering, 613, 676-686.
  • Şentürk, S., 2017. Construction of Fuzzy C Control Charts Based on Fuzzy Rule Method. Anadolu University Journal of Science and Technology AApplied Sciences and Engineering, 18, 563-572.
  • Şentürk, S., Erginel, N., Kaya, I., Kahraman, C., 2011. Design of Fuzzy Control Chart. Journal of Multiple Valued-Logic and Soft Computing, 5, 459-473.
  • Uçurum, M., 2017. Fuzzy Statistical Process Control of A Calcite Grinding Plant Using Total Color Difference Parameter (ΔE). IOSR Journal of Engineering, 7, 7-22.
  • Uslu, E., Çatar, R., Çolak, M., 2017. Si ve Cu Elementlerini İçeren Alüminyum Döküm Alaşımlarının Korozyon Özelliklerinin Belirlenmesi ve Karşılaştırılması. Engineering Sciences, 12, 3, 133- 140.
  • Wang, J.H., Raz, T., 1990. On The Construction of Control Charts Using Linguistic Variables. The International Journal of Production Research, 28, 477- 487.
  • Wang, J.H., Raz, T., 1988. Applying Fuzzy Set Theory in The Development of Quality Control Chart. Proceeding of The International of Production Research, 28, 30-35.
  • Zabihinpour, S.M., Ariffin, M.K.A., Tang S.H., Azfanizam A.S., 2014. Fuzzy Based Approach for Monitoring The Mean and Range of The Products Quality. Journal of Applied Environmental & Biological Sciences, 4, 1-7.
  • Zadeh, L.A., 1965. Fuzzy Sets, Information and Control. 8, 338-353.
There are 41 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Volkan Arslan 0000-0002-5594-1495

Publication Date September 1, 2019
Submission Date September 18, 2018
Published in Issue Year 2019 Volume: 58 Issue: 3

Cite

APA Arslan, V. (2019). TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA. Bilimsel Madencilik Dergisi, 58(3), 219-228. https://doi.org/10.30797/madencilik.620806
AMA Arslan V. TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA. Mining. September 2019;58(3):219-228. doi:10.30797/madencilik.620806
Chicago Arslan, Volkan. “TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA”. Bilimsel Madencilik Dergisi 58, no. 3 (September 2019): 219-28. https://doi.org/10.30797/madencilik.620806.
EndNote Arslan V (September 1, 2019) TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA. Bilimsel Madencilik Dergisi 58 3 219–228.
IEEE V. Arslan, “TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA”, Mining, vol. 58, no. 3, pp. 219–228, 2019, doi: 10.30797/madencilik.620806.
ISNAD Arslan, Volkan. “TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA”. Bilimsel Madencilik Dergisi 58/3 (September 2019), 219-228. https://doi.org/10.30797/madencilik.620806.
JAMA Arslan V. TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA. Mining. 2019;58:219–228.
MLA Arslan, Volkan. “TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA”. Bilimsel Madencilik Dergisi, vol. 58, no. 3, 2019, pp. 219-28, doi:10.30797/madencilik.620806.
Vancouver Arslan V. TOPLAM RENK FARKLILIĞI PARAMETRESİ KULLANILARAK BULANIK MANTIK YÖNTEMİYLE İSTATİSTİKSEL KALİTE KONTROLÜ: ALÜMİNYUM ÜRETİM TESİSİNDE BİR UYGULAMA. Mining. 2019;58(3):219-28.

22562 22561 22560 22590 22558