Year 2023,
Volume: 62 Issue: 4, 167 - 174, 12.02.2024
Baoshun Liu
,
Yanyu Song
,
Yongjing Ye
,
Zijing Zhang
References
- Baccouche, A., Garcia-Zapirain, B., Zheng, Y., Elmaghraby, A.S. 2022. Early
detection and classification of abnormality in prior mammograms
using image-to-image translation and YOLO techniques. Computer
Methods and Programs in Biomedicine, 221, 106884.https://doi.
org/10.1016/j.cmpb.2022.106884
- Girshick, R., Donahue, J., Darrell, T., Malik, J. 2014. Rich feature hierarchies
for accurate object detection and semantic segmentation. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
580-587.
- Guo, X., Li, Y. 2011. Underground Personnel Positioning System Based on
ZigBee. 2011 Fourth International Symposium on Computational Intelligence
and Design, Hangzhou, China, IEEE, 1, 298-300. DOI: 10.1109/
ISCID.2011.82
- Imam, M., Baïna, K., Tabii, Y., Ressami, E.M., Adlaoui, Y., Benzakour, I., Abdelwahed,
E.H. 2023. The Future of Mine Safety: A Comprehensive
Review of Anti-Collision Systems Based on Computer Vision in Underground
Mines. Sensors (Basel, Switzerland), 23(9), 4294. https://doi.
org/10.3390/s23094294
- Kang, L., Lu, Z., Meng, L., Gao, Z. 2024. YOLO-FA: Type-1 fuzzy attention based
YOLO detector for vehicle detection. Expert Systems with Applications,
237(Part B), 121209.https://doi.org/10.1016/j.eswa.2023.121209
- Kumar, A., Kalia, A., Kalia, A., 2022. ETL-YOLO v4: A face mask detection
algorithm in era of COVID-19 pandemic. OPTIK, 259, 169051.https://
doi.org/10.1016/j.ijleo.2022.169051
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.
2016. Ssd: single shot multi box detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture
Notes in Computer Science, Springer, Cham, 9905, 21-37. https://doi.
org/10.1007/978-3-319-46448-0_2
- Madahana, M.C.I., Nyandoro, O.T.C., Ekoru, J.E.D. 2020. Intelligent comprehensive
Occupational health monitoring system for mine workers.
IFAC-PapersOnLine, 53(2), 16494-16499. https://doi.org/10.1016/j.
ifacol.2020.12.751
- Redmon, J., Farhadi, A. 2016. YOLO9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242. https://doi.org/10.48550/arXiv.1612.08242
Redmon, J., Farhadi, A. 2018. YOLOv3:an incremental improvement.
arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.
1804.02767
- Ren, S.Q, He, K., Girshick, R., Sun, J. 2017. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Translations
on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. DOI:
10.1109/TPAMI.2016.2577031
- Tian,Y., Wang, S., Li, E., Yang, G., Liang, Z., Tan, M. 2023. MD-YOLO: Multiscale
Dense YOLO for small target pest detection. Computers and Electronics
in Agriculture, 213, 108233.https://doi.org/10.1016/j.compag.
2023.108233
Yang,C.Y., Li, C., Su, J.C., Wang, X.Q., He, Y.R. 2016. Research on video-based
system of activity recognition for coal mine safety surveillance. Coal
Engineering, 48(4), 111-113+117.
Research on Intelligent Supervision System of Ore Pass
Year 2023,
Volume: 62 Issue: 4, 167 - 174, 12.02.2024
Baoshun Liu
,
Yanyu Song
,
Yongjing Ye
,
Zijing Zhang
Abstract
To prevent safety accidents caused by mining vehicles and personnel entering the operation area by mistakes, it is necessary to reduce the risk of the ore pass. However, the underground space of the mine is narrow, and factors such as dust and noise during the unloading process endanger the health of the personnel on duty in the ore pass. As such, the target detection technology based on deep learning is introduced into the underground monitoring system. The underground surveillance video samples are collected to establish a dataset for Yolov3 algorithm to identify minecarts. Through optimizing the Yolov3 model training process and algorithm, and using the dual-camera collaborative discrimination method, the influence of brightness on the recognition results when the loaders or trucks lights are turned on can be overcome. Four types of minecarts can be accurately identified from the underground surveillance video. On the basis of mining car recognition, an intelligent access control system for mine shafts based on Jetson Nano’s embedded development is developed. The on-site operation results show that the average accuracy of target vehicle recognition is within the range of 95%-100%. The system continuously recognizes the mine car 5 times from the detection program and sends the opening and closing command to complete a 90 ° rotation, which takes only 3 seconds,effectively meeting the needs of the mine for ore pass control.
References
- Baccouche, A., Garcia-Zapirain, B., Zheng, Y., Elmaghraby, A.S. 2022. Early
detection and classification of abnormality in prior mammograms
using image-to-image translation and YOLO techniques. Computer
Methods and Programs in Biomedicine, 221, 106884.https://doi.
org/10.1016/j.cmpb.2022.106884
- Girshick, R., Donahue, J., Darrell, T., Malik, J. 2014. Rich feature hierarchies
for accurate object detection and semantic segmentation. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
580-587.
- Guo, X., Li, Y. 2011. Underground Personnel Positioning System Based on
ZigBee. 2011 Fourth International Symposium on Computational Intelligence
and Design, Hangzhou, China, IEEE, 1, 298-300. DOI: 10.1109/
ISCID.2011.82
- Imam, M., Baïna, K., Tabii, Y., Ressami, E.M., Adlaoui, Y., Benzakour, I., Abdelwahed,
E.H. 2023. The Future of Mine Safety: A Comprehensive
Review of Anti-Collision Systems Based on Computer Vision in Underground
Mines. Sensors (Basel, Switzerland), 23(9), 4294. https://doi.
org/10.3390/s23094294
- Kang, L., Lu, Z., Meng, L., Gao, Z. 2024. YOLO-FA: Type-1 fuzzy attention based
YOLO detector for vehicle detection. Expert Systems with Applications,
237(Part B), 121209.https://doi.org/10.1016/j.eswa.2023.121209
- Kumar, A., Kalia, A., Kalia, A., 2022. ETL-YOLO v4: A face mask detection
algorithm in era of COVID-19 pandemic. OPTIK, 259, 169051.https://
doi.org/10.1016/j.ijleo.2022.169051
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.
2016. Ssd: single shot multi box detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture
Notes in Computer Science, Springer, Cham, 9905, 21-37. https://doi.
org/10.1007/978-3-319-46448-0_2
- Madahana, M.C.I., Nyandoro, O.T.C., Ekoru, J.E.D. 2020. Intelligent comprehensive
Occupational health monitoring system for mine workers.
IFAC-PapersOnLine, 53(2), 16494-16499. https://doi.org/10.1016/j.
ifacol.2020.12.751
- Redmon, J., Farhadi, A. 2016. YOLO9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242. https://doi.org/10.48550/arXiv.1612.08242
Redmon, J., Farhadi, A. 2018. YOLOv3:an incremental improvement.
arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.
1804.02767
- Ren, S.Q, He, K., Girshick, R., Sun, J. 2017. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Translations
on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. DOI:
10.1109/TPAMI.2016.2577031
- Tian,Y., Wang, S., Li, E., Yang, G., Liang, Z., Tan, M. 2023. MD-YOLO: Multiscale
Dense YOLO for small target pest detection. Computers and Electronics
in Agriculture, 213, 108233.https://doi.org/10.1016/j.compag.
2023.108233
Yang,C.Y., Li, C., Su, J.C., Wang, X.Q., He, Y.R. 2016. Research on video-based
system of activity recognition for coal mine safety surveillance. Coal
Engineering, 48(4), 111-113+117.