Review
BibTex RIS Cite

Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology

Year 2025, Volume: 63 Issue: 2, 67 - 85, 01.10.2025
https://doi.org/10.30797/madencilik.1456066

Abstract

Back in the early 1980s, computer technology was actually in an incomparable state compared to today. At that time, could the human brain be replicated? Could a robot be created that could behave like a human? Can computers think? Can they learn things? Answers to questions like these have not yet been found. In fact, such questions have been asked continuously for years. They have continued to be asked, and as a result, some of these questions have been partially answered today.
Numerous artificial neural network models have been developed, and countless applications have emerged. Developments show that these systems will enter more and more people's lives in the future. These studies have actually emerged as a result of curiosity about how the human brain works and how it learns. How the human brain works is not yet known today? However, studies have shown that computers can learn and produce successful results. These systems are used effectively, especially in events that require the evaluation of a large amount of information. Applications are seen in many fields, from industrial life to financial life, from medical science to military systems. The successes obtained in these applications both increase the importance of artificial neural networks and increase interest in these systems.
In the mining industry, there is a need for improved quality control systems in the production of minerals. In addition, the desire to recover minerals of low economic value in a cost-effective way requires a higher level of control and automation. As a result of these demands, the success and necessity of instant messaging mineral classification and the use of this information have led to the use of artificial neural networks in the mining industry. Since the 1990s, the use of artificial neural networks has been increasing day by day. However, artificial neural networks should also be selected appropriately. In this article, information about the use of artificial neural networks in the world is given, and how they are used with mineral processing systems is explained. Multifaceted research results are given on the benefits of its use in mineral processing systems.

Ethical Statement

TÜM ETİK KURALLARINA UYULMUŞTUR

Supporting Institution

YOK

Thanks

YOK

References

  • Ahl A., Yarime M., Tanaka K., Sagawa D., 2019. Review of blockchain-based distributed energy: Implications for institutional development, Renew Sust Energy Rev 107, 200–211.
  • Ahmad, M.A., Eckert, C., Teredesai, A. 2018. Interpretable machine learning in healthcare. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA, 29 August–1 September 2018, 559–560.
  • Ahmad, M.W., Mourshed, M., Rezgui, Y. 2017. Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy Buildings 147, 77–89.
  • Aires, F., Prigent, C., Rothstein, M. 2001. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land. J. Geophys. Res. 106, 14887–14907.
  • Aldrich, C., Marais, C., Shean, B.J., Cilliers, J.J., 2010. Online monitoring and control of froth flotation systems with machine vision: a review. Int. J. Miner. Process. 96, 1–13. https://doi.org/10.1016/j.minpro.2010.04.005.
  • Ambrozic, T.,Turk, G. 2003. Prediction of subsidence due to underground mining by artificial neural networks. Computers & Geosciences, 29, 627–637.
  • Andersson, T., Thurley, M.J., Carlson, J.E. 2012. A machine vision system for estimation of size distributions by weight of limestone particles. Miner. Eng. 25, 38–46. https:// doi.org/10.1016/j.mineng.2011.10.001.
  • Ankley, G.T., Bennett, R.S., Erickson, R.J., Hoff, D.J., Hornung, M.W., Johnson, R.D. et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 29, 730–741. https://doi.org/10.1002/etc.34
  • Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., Herrera, F. 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58, 82–115.
  • Araldo, A., Gao, S., Seshadri, R., Azevedo, C. L., Ghafourian, H., Sui, Y., Ben - Akiva,M., 2019. System level optimization of multi-modal transportation networks for energy efficiency using personalized incentives: formulation, implementation, and performance. Transportation Research Record, 2673(12), 425-438.
  • Aydın, F. 2021. Sınıf öğretmeni adaylarının eğitimde sanal gerçeklik kullanımına ilişkin görüşleri. Çanakkale Onsekiz Mart Üniversitesi Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi.
  • Babacan O., De Causmaecker S., Gambhir A., Fajardy M., Rutherford A. W., Fantuzzi A., Nelson J. 2020. Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage. Nat Energy, 5 (9), 720–728.
  • Bahtiyar, K. (2021). Türkiye’de farklı sektörlerdeki yapay zeka uygulamalarına ilişkin müşteri algılarının değerlendirilmesi. Kütahya Dumlupınar Üniversitesi Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi.
  • Bariotakis, M., Luciana Georgescu, L., Laina, D., Oikonomou, I., Ntagounakis, G., Koufaki, M.I., Souma, M., Choreftakis, M., Zormpa, O.G., Smykal, P., Sourvinos, G., Lionis, C., Castanas, E., Karousou, R., Pirintsos, S.A. 2019. From wild harvest towards precision agriculture: use of ecological niche modelling to direct potential cultivation of wild medicinal plants in crete. Sci. Total Environ. 694, 133681 https://doi.org/10.1016/j. scitotenv.2019.133681.
  • Bartolacci, G., Pelletier, P., Tessier, J., Duchesne, C., Bossé, P.-A., Fournier, J. 2006. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes—Part I: flotation control based on froth textural characteristics. Miner. Eng. 19, 734–747. https://doi.org/10.1016/j.mineng.2005. 09.041.
  • Baryannis, G., Dani, S., Antoniou, G. 2019a. Predicting supply chain risks using machine learning: The trade -off between performance and interpretability. Future Generation Computer Systems, 101, 993-1004.
  • Baryannis, G., Validi, S., Dani, S., Antoniou, G. 2019b. Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, 57(7), 2179-2202.
  • Batal, M. S. 2016. Yapay zeka uygulamaları ve yapay zekanın geleceği. Uluslararası Sunhill Üniversitesi, Yüksek Lisans Tezi.
  • Benardos, A.G., Kaliampakos, D.C. 2004. Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology, 19, 597–605.
  • Bishop, C.M. 2005. Neural networks for pattern recognition. Oxford University Press, 482.
  • Boden, M. A. 2018. Artificial intelligence: A very short introduction. Oxford University Press.
  • Borba, J.V.B., Alves, V.M., Braga, R.C., Korn, D.R., Overdahl, K., Silva, A.C., Hall, S.U.S., Overdahl, E., Kleinstreuer, N., Strickland, J., Allen, D., Andrade, C.H., Muratov, E.N., Tropsha, A. 2022. STopTox: an in silico alternative to animal testing for acute systemic and topical toxicity. Environ. Health Perspect. 130. https://doi.org/10.1289/EHP9341.
  • Casali, A., Gonzalez, G., Vallebuona, G., Perez, C., Vargas, R. 2001. Grindability Soft-Sensors Based On Lithological Composition and On-line Measurements, Minerals Engineering. Vol.14, No. 7, 689–700.
  • Caceres, E.L., Mew, N.C., Keiser, M.J. 2020. Adding stochastic negative examples into machine learning improves molecular bioactivity prediction. J. Chem. Inf. Model. 60, 5957–5970. https://doi.org/10.1021/acs.jcim.0c00565.
  • Chai, S.S., Walker, J.P., Makarynskyy, O., Kuhn, M., Veenendaal, B., West, G. 2009. Use of soil moisture variability in artificial neural network retrieval of soil moisture Remote Sens., 2, 166-190.
  • Chen, Z., Liu, X., Yang, J., Little, E., Zhou, Y. 2018. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary. Basin. Comput. Geosci., 138, 104450.
  • Chen, K., Peng, Y., Lu, S., Lin, B., Li, X. 2021. Bagging based ensemble learning approaches for modeling the emission of PCDD/Fs from municipal solid waste incinerators. Chemosphere 274, 129802. https://doi.org/10.1016/j.chemosphere.2021.129802.
  • Cheng L., Yu T. 2019. A new generation of ai: A review and perspective on machine learning technologies applied to smart energy and electric power systems, Int J Energy Res 43 (6), 1928–1973.
  • Choi, D.J., Park, H. 2001. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. Water Res. 35, 3959–3967. https://doi.org/10.1016/S0043-1354(01)00134-8.
  • Conradie, A.V.E., Aldrich, C. 2001. Neurocontrol of A Ball Mill Grinding Circuit Using Evolutionary Reinforcement Learning. Minerals Engineering, Vol.14, No. 10, 1277–1294.
  • Cutmore, N.G., Liu, Y., Middleton, A.G. 1997. Ore Characterisation and Sorting. Minerals Engineering, Vol. 10, No. 4, 421–426.
  • Canakcı, H., Pala, M. 2007. Tensile strength of basalt from a neural network. Engineering Geology, 94, 10–18.
  • Çavaş, B., Çavaş, P., Can, B. 2004. Eğitimde sanal gerçeklik. The Turkish Online Journal of Educational Technology, 3(4), 110-117.
  • Çetin, E. 2016. Yapay zeka uygulamaları (3. Basım). Seçkin Yayınevi.
  • Data-Science. 2024. An Intuitive Explanation of Data Science Concepts. Part I: DS, AI, ML, and DL in Simple Words. https://data-science-ua.com/blog/an-intuitive-explanation-of-data-science-concepts-part-l-ds-ai-ml-and-dl-in-simple-words/ [Accessed March 15, 2024].
  • Davila-Santiago, E., Cheng Shi, C., Mahadwar, G., Medeghini, B., Insinga, L., Hutchinson, R., Good, S., Jones, G.D. 2022. Machine learning applications for chemical fingerprinting and environmental source tracking using non-target chemical data. Environ. Sci. Technol. 56, 4080–4090. https://doi.org/10.1021/acs.est.1c06655.
  • Demuth, H., Beale, M., Hagan, M. 2008. Neural network. The MathWorks, Inc., 906s.
  • De Lima, R.P., Duarte, D., Nicholson, C., Slatt, R., Marfurt, K.J. 2020. Petrographic microfacies classification with deep convolutional neural networks. Comput. Geosci., 142, 104481.
  • DeTore, A.W. 1989. An introduction to expert systems. J. Insur. Med., 21, 233–236.
  • Di Noia A., Hasekamp O.P. 2018. Neural networks and support vector machines and their application to aerosol and cloud remote sensing: a review. Springer Series in Light Scattering, Springer, 279-329.
  • Dobbelaere, M.R., Ureel, Y., Vermeire, F.H., Tomme, L., Stevens, C.V., Van Geem, K.M. 2022. Machine learning for physicochemical property prediction of complex hydrocarbon mixtures. Ind. Eng. Chem. Res. 61, 8581–8594. https://doi.org/10.1021/acs.iecr.2c00442.
  • Dorfling, C., Akdogan, G., Bradshaw, S.M., Eksteen, J.J., 2013. Modelling of an autoclave used for high pressure sulphuric acid/oxygen leaching of first stage leach residue, Part 2: model application. Miner. Eng. 53, 213–219. https://doi.org/10.1016/ J.MINENG.2013.03.011.
  • Dupont B., Vingerhoets P., Tant P., Vanthournout K., Cardinaels W., De Rybel T., Peeters E., Belmans R. 2012. Linear breakthrough project: Large-scale implementation of smart grid technologies in distribution grids. in: Proc 3rd IEEE PES Innov Smart Grid Technol (ISGT Europe), IEEE, 1–8.
  • Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Williams, M.D. 2021. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.
  • Eberhart, R.C., Shi, Y. 2007. Computational intelligence concepts to implementations, Morgan Kaufmann, 467.
  • Elmas, C. 2003. Yapay Sinir Ağları. Seckin Yayıncılık, Ankara.
  • Emeritus. 2024. Financial Digital Transformation: What is It, Its Benefits and Challenges. https://emeritus.org/in/learn/financial-digital-transformation/ [Accessed March 15, 2024].
  • Eskandari - Khanghahi, M., Tavakkoli - Moghaddam, R., Taleizadeh, A. A., Amin, S. H. 2018. Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Engineering Applications of Artificial Intelligence, 71, 236-250.
  • Faster Capital. 2024. Deep Learning. https://fastercapital.com/keyword/deep-learning.html [Accessed March 15, 2024].
  • Freeman B.S., Taylor G., Gharabaghi B., J. 2018. The Forecasting air quality time series using deep learning, J. Air Waste Manage. Assoc., 68, 866-886.
  • Feng, X.T., Seto, M. 1999. A new method of modelling the rock microfracturing process in double-torsion experiments using neural networks. International Journal for Numerical and Analytical Methods in Geomechanics, 23, 905-923.
  • Folorunso, I., Abikoye, O., Jimoh, R., Raji, K. 2012. A rule-based expert system for mineral identification. J. Emerg. Trends Comput. Inf. Sci., 3, 205–210.
  • Fuerstenau, M.C., Han, K.N. 2003. Principles of Mineral Processing. Society for Mining, Metallurgy, and Exploration.
  • Fuerstenau, D.W., De, A., Kapur, P.C. 2004. Linear and nonlinear particle breakage process in comminution systems. International Journal of Mineral Processing, 74, 317-327.
  • Glen, T., Nwailab, H.E., Frimmele, F., Steven, E., Zhangb, C.D, Julie, E., Bourdeauc, Leon C.K. Tolmayg, R.J., Durrheima, Y.G. 2022. The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach, ResourcesPolicy, V78, 102851.
  • Gholamrezaei, A., Shabbooei, A. R., Ghaferin, S. A. 2023. Application of novel and green technology in industry. International journal of industrial engineering and operational research, 5(1), 1-7.
  • Goldberg, E., Scheringer, M., Bucheli, T.D., Hungerbuhler, K. 2015. Prediction of nanoparticle transport behavior from physicochemical properties: machine learning provides insights to guide the next generation of transport models. Environ. Sci-Nano 2 (4), 352–360.
  • Gomez-Flores, A., Solongo, S.K., Heyes, G.W., Ilyas, S., Kim, H. 2020. Bubble – particle interactions with hydrodynamics, XDLVO theory and surface roughness for flotation in an agitated tank using CFD simulations. Miner. Eng 152, 106368.
  • Gonzalez, G.D., Miranda, D., Casali, A., Vallebuona, G. 2008. Detection and identification of ore grindability in a semiautogenous grinding circuit model using wavelet transform variances of measured variables. Int. J. Miner. Process. 89, 53–59. https:// doi.org/10.1016/j.minpro.2008.09.002.
  • Groenewald, J.W.de V., Coetzer, L.P., Aldrich, C. 2006. Statistical monitoring of a grinding circuit: an industrial case study. Miner. Eng. 19, 1138–1148. https://doi. org/10.1016/j.mineng.2006.05.009.
  • Guyot, O., Monredon, T., LaRosa, D., Broussaud, A. 2004. VisioRock, an integrated vision technology for advanced control of comminution circuits, Minerals Engineering, vol.17, 1227–1235.
  • Gurney, K. 2018. An Introduction to Neural Networks. CRC Press: Boca Raton, FL, USA.
  • Hale, S.E., Arp, H.P.H., Schliebner, I., Neumann, M. 2020. Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH. Environ. Sci. Eur. 32, 155. https://doi.org/ 10.1186/s12302-020-00440-4.
  • Hassanien, A.E. 2020. Advances in Intelligent Systems and Computing, The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Volume 921, AMLTA, EGYPT, DOI:10.1007/978-3-319-74690-6.
  • Haykin, S. 2009. Neural Networks and Learning Machines. Pearson Education Ltd, New Jersey, USA. 906.
  • Hawkes, A. D. 2010. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy, 38 (10), 5977–5987.
  • Hellingrath, B., Lechtenberg, S. 2019. Applications of artificial intelligence in supply chain management and logistics: focusing onto recognition for supply chain execution. The Art of Structuring: Bridging the Gap Between Information Systems Research and Practice, 283-296.
  • Hogarth, R.M., Lejarraga, T., Soyer, E. 2015. The Two Settings of Kind and Wicked Learning Environments. Curr. Dir. Psychol. Sci. 24 (5), 379–385.
  • Horrocks, T., Wedge, D., Holden, E.J., Kovesi, P., Clarke, N., Vann, J. 2015. Classification of gold-bearing particles using visual cues and cost-sensitive machine learning. Math. Geosci. 47, 521–545. https://doi.org/10.1007/s11004-015-9597-7.
  • Hosseini, M.R., Shirazi, H.H.A., Massinaei, M., Mehrshad, N. 2015. Modeling the Relationship between Froth Bubble Size and Flotation Performance Using Image Analysis and Neural Networks. Chem. Eng. Commun. 202 (7), 911–919.
  • Hu, W., Hadler, K., Neethling, S.J., Cilliers, J.J. 2013. Determining flotation circuit layout using genetic algorithms with pulp and froth models. Chem. Eng. Sci. 102, 32–41.
  • Huang, Y. 1999. Application of artificial neural networks to predictions of aggregate quality parameters. International Journal of Rock Mechanics and Mining Sciences, 36, 551-561.
  • Interchange. 2024. What is industry 4.0. https://blog.isa.org/what-is-industry-40. [Accessed March 15, 2024].
  • Izadi, H., Sadri, J., Bayati, M. 2017. An intelligent system for mineral identification in thin sections based on a cascade approach. Comput. Geosci., 99, 37–49.
  • Jahedsaravani, A., Marhaban, M.H., Massinaei, M. 2014. Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks. Miner. Eng. 69, 137–145. https://doi.org/10.1016/j.mineng.2014.08.003.
  • Jackson, P.C. 2019. Introduction to artificial intelligence, Mineola New York: Dover Publications Inc., 458, ISBN 0-486-24864-X.
  • Jeong, J., Choi, J. 2022. Artificial intelligence-based toxicity prediction of environmental chemicals: future directions for chemical management applications. Environ. Sci. Technol. 56, 7532–7543. https://doi.org/10.1021/acs.est.1c07413.
  • Joshi, A.V. 2020. Machine learning and artificial intelligence, Springer International Publishing, 10, 978-3, ISBN-13:978-3030266219
  • Kang, C., Zhou, T., Chen, Q., Xu, Q., Xia, Q., Ji, Z. 2012. Carbon emission flow in networks, Sci Rep-UK. 2, 479.
  • Kahraman, S., Altun, H., Tezekici, B.S., Fener, M. 2006. Sawability prediction of carbonate rocks from shear strength parameters using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 43, 157-164.
  • Kamel, H. 2011. Neural Network Application for Structure Design Optimization of Thin-Wall Structures. International Mechanical Engineering Congress and Exposition, ASME 2011, IMECE 2011, vol 9 (American Society of Mechanical Engineers Digital Collection). 41–50.
  • Knifexns. 2024. https://knifexns.bodegalostoneles.com/enx/machine-learning-ai/ [Accessed March 15, 2024].
  • Karami, D., 2022. Supply Chain Network Design Using Particle Swarm Optimization (PSO) Algorithm. International journal of industrial engineering and operational research, 4(1), 1-8.
  • Kecman, V. 2001. Learning and Soft Computing: Support Vector Machines, Neural Networks and Fuzzy Logic Models, A Bradford Book, The MIT Pres, Cambridge, Massachusetts, London, England.
  • Killeen, P., Ding, B,, Kiringa, I., Yeap T. 2019. IoT-based predictive maintenance for fleet management Procedia Comput. Sci. 151, 607–13.
  • Kistner, M., Jemwa, G.T., Aldrich, C. 2013. Monitoring of mineral processing systems by using textural image analysis. Miner. Eng. 52, 169–177. https://doi.org/10.1016/j. mineng.2013.05.022.
  • LeCun, Y., Bengio, Y., Hinton, G. 2015. Deep learning, Nature, 521, 436.
  • Lei, L., Pang, R., Han, Z., Wu, D. 2023. Current applications and future impact of machine learning in emerging contaminants: a review. Crit. Rev. Environ. Sci. Technol. 1–19. https://doi. org/10.1080/10643389.2023.2190313.
  • le Roux, J.D., Craig, I.K., Hulbert, D.G., Hinde, A.L. 2013. Analysis and validation of a run-of-mine ore grinding mill circuit model for process control. Miner. Eng. 43, 121–134. https://doi.org/10.1016/j.mineng.2012.10.009.
  • Li X., Yao X. 2020. Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic? —a simulated study on china’s coal capacity cut and carbon tax, Energy Policy 138. 111232.
  • Li, Y.G., Jiang, P., She, Q., Lin, G. 2018. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Environ. Pollut. 241, 1115–1127. https://doi.org/10.1016/j.envpol.2018.05.072.
  • Lipton, Z.C., Berkowitz, J., Elkan, C. 2015. A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019v1, https://doi.org/10.48550/arXiv.1506.00019.
  • Liu Y., Wu L. 2016. Geological disaster recognition on optical remote sensing images using deep learning. Procedia Computer Science, 91, 566-575.
  • Liu, H., Zhong, C., Alnusair, A., Islam, S.R.2021. FAIXID: A framework for enhancingai explainability of intrusion detection results using data cleaning techniques. J.Netw. Syst. Manag., 29, 1–30.
  • López, A., Ramil, A., Pozo-Antonio, J., Fiorucci, M., Rivas, T. 2017. Automatic Identification of Rock-Forming Minerals in Granite Using Laboratory Scale Hyperspectral Reflectance Imaging and Artificial Neural Networks. J. Nondestruct. Eval., 36, 52.
  • Lobo, A., Garcia, E., Barroso, G., Martí, D., Fernandez-Turiel, J.L., Ibáñez-Insa, J. 2021. Machine-learning for mineral identification and ore estimation from hyperspectral imagery in tin-tungsten deposits. Remote Sens., 13, 3258.
  • Lotfi, R., Mehrjerdi, Y. Z., Pishvaee, M. S., Sadeghieh, A., Weber, G. W. 2021. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 11(2), 221.
  • Lotfi, R., Sheikhi, Z., Amra, M., AliBakhshi, M., Weber, G.W. 2021. Robust optimization of risk-aware, resilient and sustainable closed-loop supply chain network design with Lagrange relaxation and fix-and-optimize. International Journal of Logistics Research and Applications, 1-41.
  • Mahmud, K., Khan, B., Ravishankar, J., Ahmadi, A., Siano, P. 2020. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview, Renew Sustain Energy Rev. 127, 109840.
  • Maleki, E. 2023. Resiliency in supply chain. International Journal of Industrial Engineering and Operational Research, 5(1), 8-18.
  • Marshall, J.A., Bonchis, A., Nebot, E., Scheding, S. 2016. Robotics in Mining. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham., 1549-1576. https://doi.org/10.1007/978-3-319-32552-1_59.
  • Masampally, V.S., Pareek, A., Nadimpalli, N.R.V., Runkana, V. 2023. Artificial Intelligence for Monitoring and Optimization of an Integrated Mineral Processing Plant. Trans Indian Inst Met. https://doi.org/10.1007/s12666-023-03093-y.
  • Massinaei, M., Doostmohammadi, R. 2010. Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques. Miner. Eng. 23 (2), 83–90.
  • Mathworks, C. 2020. Predictive Maintenance Toolbox TM User’s Guide.
  • Mehmet, A.C.I., Doğansoy, G. A. 2022. Makine Öğrenmesi ve Derin Öğrenme Yöntemleri Kullanılarak E-Perakende Sektörüne Yönelik Talep Tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1325-1340.
  • Min, H. 2010. Artificial intelligence in supply chain management: theory and applications. International Journal of Logistics: Research and Applications, 13(1), 13-39.
  • Mishra, K.A., 2021. AI4R2R (AI for Rock to Revenue): A Review of the Applications of AI in Mineral Processing. Minerals, 11, 1118.
  • Misra, N.N., Dixit, Y., Al -Mallahi, A., Bhullar, M.S., Upadhyay, R., Martynenko, A. 2020. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9), 6305-6324.
  • Mokhtari, K.E., Higdon, B.P., Basar, A. 2019. Interpreting financial time series with SHAP values. In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering, Markham, ON, Canada, 4–6 November 2019.166–172.
  • Moolman, D.W., Aldrich, C., Vandeventer, J.S.J., Bradshaw, D.J. 1995. The interpretation of flotation froth surfaces by using digital image-analysis and neural networks. Chem. Eng. Sci. 50 (22), 3501–3513.
  • Nabiyev, V.V. 2003. Yapay Zeka, Seckin Yayıncılık, Ankara.
  • Nakhaei, F., Irannajad, M. 2013. Comparison between neural networks and multiple regression methods in metallurgical performance modeling of flotation column. Physicochem. Probl. Mi 49 (1), 255–266.
  • Nakhaei, F., Mosavi, M.R., Sam, A., Vaghei, Y. 2012. Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. Int. J. Miner. Process. 110, 140–154.
  • Nakhaeie, F., Sam, A., Mosavi, M.R. 2013. Concentrate grade prediction in an industrial flotation column using artificial neural network. Arab. J. Sci. Eng. 38 (5), 1011–1023. https://doi.org/10.1007/s13369-012-0350-y.
  • Nazeri, A., Keshavarzi, M. 2019. Assessing the Performance of Branches of Refah Bank in Tehran Province by Combining Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) Algorithms in Fuzzy Conditions. International journal of industrial engineering and operational research, 1(1), 11.
  • Nikookar, E., Varsei, M., Wieland, A. 2021. Gaining from disorder: Making the case for antifragility in purchasing and supply chain management. Journal of Purchasing and Supply Management, 27(3), 100699.
  • Nwaila, G., Frimmel, H., Zhang, S.E., Bourdeau, J.E., Tolmay, L.C.K., Durrheim, R.J., Ghorbani, Y. 2022. The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach, Resources Policy, Volume 78, 1-18, 102851.
  • Ojha, R., Jaiswal, C. M. 2023. SAP S/4HANA Asset Management Configure, Equip, and Manage your Enterprise, APRESS Berkeley, CA.
  • Okada, N., Maekawa, Y., Owada, N., Haga, K., Shibayama, A., Kawamura, Y. 2020. Automated identification of mineral types and grain size using hyperspectral imaging and deep learning for mineral processing. Minerals, 10, 809.
  • Oliker, N., Ostfeld, A. 2014. A coupled classification – evolutionary optimization model for contamination event detection in water distribution systems. Water Res. 51, 234–245. https://doi.org/10.1016/j.watres.2013.10.060.
  • Qin, S.J. 2018. Special issue on big data: data science for process control and operations. J. Process Control 67, iii. https://doi.org/10.1016/S0959-1524(18)30086-6.
  • Öztemel, E. 2003. Yapay Sinir Ağları. Papatya Yayıncılık, İstanbul.
  • Pampel, F.C. 2000. Logistic Regression: A Primer Sage Univ. Press132, 98.
  • Pandian, D.A.P. 2019. Artificial intelligence application in smart warehousing environment for automated logistics. Journal of Artificial Intelligence and Capsule Networks, 1(2), 63-72.
  • Perez, C.A., Saravia, J.A., Navarro, C.F., Schulz, D.A., Aravena, C.M., Galdames, F.J. 2015. Rock lithological classification using multi-scale Gabor features from subimages, and voting with rock contour information. International Journal of Mineral Processing, 144, 56–64.
  • Pirouzan, D., Yahyaei, M., Banisi, S. 2014. Pareto based optimization of flotation cells configuration using an oriented genetic algorithm. Int. J. Miner. Process., 126, 107–116.
  • Pournader, M., Ghaderi, H., Hassanzadegan, A., Fahimnia, B. 2021. Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 108250.
  • Prabhavathy, P., Tripathy, B., Venkatesan, M. 2019. Unsupervised learning method for mineral identification from hyperspectral data., In Proceedings of the International Conference on Innovations in Bio-Inspired Computing and Applications, Gunupur, India, Springer: Cham, Switzerland, 148–160.
  • Ramil, A., López, A., Pozo-Antonio, J., Rivas, T. 2018. A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks. Measurement, 117, 90–95.
  • Ramujee K. 2013. Strength Properties of Polypropylene Fiber reinforced Concrete. International Journal of Innovative Reaserch in Science, Engineering and Technology, 2 (8), 3409-3413.
  • Ren, C.C., Yang, J.G., Liang, C. 2015. Estimation of Copper Concentrate Grade Based on Color Features and Least-Squares Support Vector Regression. Physicochem. Probl. Mi. 51 (1), 163–172.
  • Rhosonics. 2024. Control strategies for flotation. https://rhosonics.com/insight/blog/control-strategies-for-flotation/ [Accessed March 15, 2024].
  • Sağıroğlu, S., Besdok, E., Erler, M. 2003. Muhendislikte Yapay Zekâ Uygulamaları- I, Ufuk Yayıncılık, Kayseri.
  • Semwayo, D.T., Ajoodha, R. 2021. A Causal Bayesian Network Model for Resolving Complex Wicked Problems. In: 2021 IEEE International IOT Electronics. and. Mechatronics. Conference. (IEMTRONICS), 1–8.
  • Siler-Evans K., Azevedo I. L., Morgan M. G. 2012. Marginal emissions factors for the us electricity system, Environ Sci Technol 46 (9), 4742–4748.
  • Ssempijja, M.N., Namango, S., Ochola, J., Mubiru, P.K. 2021. Application of Markov chains in manufacturing systems: A review. International journal of industrial engineering and operational research, 3(1), 1-13.
  • Swiss Cognitive. 2024. What is Artificial Intelligence? https://swisscognitive.ch/2020/11/24/artificial-intelligence-2/ [Accessed March 15, 2024].
  • Tabassum Z, Samantaray R, R., Mohammadi S, H., Fathima A. 2024. Artificial Intelligence and Blockchain Technology for Secure Smart Grid and Power Distribution Automation, AI and Blockchain Applications in Industrial Robotics, IGI GLOBAL Chapter 9, 27.
  • Tang, D.G., Milliken, K.L., Spikes, K.T. 2020. Machine learning for point counting and segmentation of arenite in thin section. Mar. Pet. Geol., 120, 104518.
  • Tessier, J., Duchesne, C., Bartolacci, G. 2007. A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Miner. Eng. 20, 1129–1144. https://doi.org/10.1016/j.mineng.2007.04.009.
  • Thomas, D. S. 2018. The Costs and Benefits of Advanced Maintenance in Manufacturing (Gaithersburg, MD)
  • Thomas, L., Zhou, Y., Long, C., Wu, J., Jenkins, N. 2019. A general form of smart contract for decentralized energy systems management, Nat Energy 4 (2), 140–149.
  • Thomson, R.C., Harrison, G.P., Chick, J.P. 2017. Marginal greenhouse gas emissions displacement of wind power in Great Britain, Energy Policy, 101, 201–210.
  • Thurley, M.J. 2009. Automated online measurement of particle size distribution using 3D range data. IFAC Proc. 42, 134–139. https://doi.org/10.3182/20091014-3-CL-4011. 00025.
  • Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., Floridi, L. 2022. The ethics of algorithms: Key problems and solutions. AI Soc., 37, 215–230.
  • Tyagi, A,K, Tiwari, S. 2024. The Future of Artificial Intelligence in Blockchain Applications, e-Book: Machine Learning Algorithms Using Scikit and TensorFlow Environments, Mendeley, 28.
  • Umucu, Y. 2011. Kireçtaşı örneğinin yapay sinir ağları ile öğütme işlemlerinin modellenmesi ve kinetik modelle kıyaslanması, SDÜ Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, PhD, 457, Isparta, Türkiye.
  • Umucu, Y., Deniz, V., Bozkurt, V., Çağlar, M.F. 2016. The evaluation of grinding process using artificial neural network, International Journal of Mineral Processing, 146, 46-53.
  • Wang, J.S., Han, S. 2015. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm. Comput. Intel. Neurosc., 1-10.
  • Wang, Q., Zhang, X., Tang, B., Ma, Y., Xing, J., Liu, L. 2021. Lithology identification technology using BP neural network based on XRF. Acta Geophys., 69, 2231–2240.
  • Wordstream. 2024. 10 Companies Using Machine Learning in Cool Ways https://www.wordstream.com /blog/ws/2017/07/28/machine-learning-applications [Accessed March 15, 2024].
  • Wong, K.K.L. 2023. Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, e-Book, Wiley-IEEE Press, 432.
  • Zhao, R., Deutz, P., Neighbour, G., McGuire, M. 2012. Carbon emissions intensity ratio: an indicator for an improved carbon labelling scheme, Environ Res Lett 7 (1), 014014.
  • Zhou, P., Chai, T., Wang, H. 2009. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Trans. Auto. Sci. Eng. 6, 730–743. https://doi. org/10.1109/TASE. 2008.2011562.
  • Zhou, Y,J. Wu, G.S., Long, C. 2020. Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community, Appl. Energy, 278, 115671.
  • Zulu, M.L.T., Carpanen, R.P., Tiako, R. A. Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks. Energies 2023, 16, 1786. https://doi.org/10.3390/en16041786.

Year 2025, Volume: 63 Issue: 2, 67 - 85, 01.10.2025
https://doi.org/10.30797/madencilik.1456066

Abstract

References

  • Ahl A., Yarime M., Tanaka K., Sagawa D., 2019. Review of blockchain-based distributed energy: Implications for institutional development, Renew Sust Energy Rev 107, 200–211.
  • Ahmad, M.A., Eckert, C., Teredesai, A. 2018. Interpretable machine learning in healthcare. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA, 29 August–1 September 2018, 559–560.
  • Ahmad, M.W., Mourshed, M., Rezgui, Y. 2017. Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy Buildings 147, 77–89.
  • Aires, F., Prigent, C., Rothstein, M. 2001. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land. J. Geophys. Res. 106, 14887–14907.
  • Aldrich, C., Marais, C., Shean, B.J., Cilliers, J.J., 2010. Online monitoring and control of froth flotation systems with machine vision: a review. Int. J. Miner. Process. 96, 1–13. https://doi.org/10.1016/j.minpro.2010.04.005.
  • Ambrozic, T.,Turk, G. 2003. Prediction of subsidence due to underground mining by artificial neural networks. Computers & Geosciences, 29, 627–637.
  • Andersson, T., Thurley, M.J., Carlson, J.E. 2012. A machine vision system for estimation of size distributions by weight of limestone particles. Miner. Eng. 25, 38–46. https:// doi.org/10.1016/j.mineng.2011.10.001.
  • Ankley, G.T., Bennett, R.S., Erickson, R.J., Hoff, D.J., Hornung, M.W., Johnson, R.D. et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 29, 730–741. https://doi.org/10.1002/etc.34
  • Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., Herrera, F. 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58, 82–115.
  • Araldo, A., Gao, S., Seshadri, R., Azevedo, C. L., Ghafourian, H., Sui, Y., Ben - Akiva,M., 2019. System level optimization of multi-modal transportation networks for energy efficiency using personalized incentives: formulation, implementation, and performance. Transportation Research Record, 2673(12), 425-438.
  • Aydın, F. 2021. Sınıf öğretmeni adaylarının eğitimde sanal gerçeklik kullanımına ilişkin görüşleri. Çanakkale Onsekiz Mart Üniversitesi Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi.
  • Babacan O., De Causmaecker S., Gambhir A., Fajardy M., Rutherford A. W., Fantuzzi A., Nelson J. 2020. Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage. Nat Energy, 5 (9), 720–728.
  • Bahtiyar, K. (2021). Türkiye’de farklı sektörlerdeki yapay zeka uygulamalarına ilişkin müşteri algılarının değerlendirilmesi. Kütahya Dumlupınar Üniversitesi Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi.
  • Bariotakis, M., Luciana Georgescu, L., Laina, D., Oikonomou, I., Ntagounakis, G., Koufaki, M.I., Souma, M., Choreftakis, M., Zormpa, O.G., Smykal, P., Sourvinos, G., Lionis, C., Castanas, E., Karousou, R., Pirintsos, S.A. 2019. From wild harvest towards precision agriculture: use of ecological niche modelling to direct potential cultivation of wild medicinal plants in crete. Sci. Total Environ. 694, 133681 https://doi.org/10.1016/j. scitotenv.2019.133681.
  • Bartolacci, G., Pelletier, P., Tessier, J., Duchesne, C., Bossé, P.-A., Fournier, J. 2006. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes—Part I: flotation control based on froth textural characteristics. Miner. Eng. 19, 734–747. https://doi.org/10.1016/j.mineng.2005. 09.041.
  • Baryannis, G., Dani, S., Antoniou, G. 2019a. Predicting supply chain risks using machine learning: The trade -off between performance and interpretability. Future Generation Computer Systems, 101, 993-1004.
  • Baryannis, G., Validi, S., Dani, S., Antoniou, G. 2019b. Supply chain risk management and artificial intelligence: state of the art and future research directions. International Journal of Production Research, 57(7), 2179-2202.
  • Batal, M. S. 2016. Yapay zeka uygulamaları ve yapay zekanın geleceği. Uluslararası Sunhill Üniversitesi, Yüksek Lisans Tezi.
  • Benardos, A.G., Kaliampakos, D.C. 2004. Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology, 19, 597–605.
  • Bishop, C.M. 2005. Neural networks for pattern recognition. Oxford University Press, 482.
  • Boden, M. A. 2018. Artificial intelligence: A very short introduction. Oxford University Press.
  • Borba, J.V.B., Alves, V.M., Braga, R.C., Korn, D.R., Overdahl, K., Silva, A.C., Hall, S.U.S., Overdahl, E., Kleinstreuer, N., Strickland, J., Allen, D., Andrade, C.H., Muratov, E.N., Tropsha, A. 2022. STopTox: an in silico alternative to animal testing for acute systemic and topical toxicity. Environ. Health Perspect. 130. https://doi.org/10.1289/EHP9341.
  • Casali, A., Gonzalez, G., Vallebuona, G., Perez, C., Vargas, R. 2001. Grindability Soft-Sensors Based On Lithological Composition and On-line Measurements, Minerals Engineering. Vol.14, No. 7, 689–700.
  • Caceres, E.L., Mew, N.C., Keiser, M.J. 2020. Adding stochastic negative examples into machine learning improves molecular bioactivity prediction. J. Chem. Inf. Model. 60, 5957–5970. https://doi.org/10.1021/acs.jcim.0c00565.
  • Chai, S.S., Walker, J.P., Makarynskyy, O., Kuhn, M., Veenendaal, B., West, G. 2009. Use of soil moisture variability in artificial neural network retrieval of soil moisture Remote Sens., 2, 166-190.
  • Chen, Z., Liu, X., Yang, J., Little, E., Zhou, Y. 2018. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary. Basin. Comput. Geosci., 138, 104450.
  • Chen, K., Peng, Y., Lu, S., Lin, B., Li, X. 2021. Bagging based ensemble learning approaches for modeling the emission of PCDD/Fs from municipal solid waste incinerators. Chemosphere 274, 129802. https://doi.org/10.1016/j.chemosphere.2021.129802.
  • Cheng L., Yu T. 2019. A new generation of ai: A review and perspective on machine learning technologies applied to smart energy and electric power systems, Int J Energy Res 43 (6), 1928–1973.
  • Choi, D.J., Park, H. 2001. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. Water Res. 35, 3959–3967. https://doi.org/10.1016/S0043-1354(01)00134-8.
  • Conradie, A.V.E., Aldrich, C. 2001. Neurocontrol of A Ball Mill Grinding Circuit Using Evolutionary Reinforcement Learning. Minerals Engineering, Vol.14, No. 10, 1277–1294.
  • Cutmore, N.G., Liu, Y., Middleton, A.G. 1997. Ore Characterisation and Sorting. Minerals Engineering, Vol. 10, No. 4, 421–426.
  • Canakcı, H., Pala, M. 2007. Tensile strength of basalt from a neural network. Engineering Geology, 94, 10–18.
  • Çavaş, B., Çavaş, P., Can, B. 2004. Eğitimde sanal gerçeklik. The Turkish Online Journal of Educational Technology, 3(4), 110-117.
  • Çetin, E. 2016. Yapay zeka uygulamaları (3. Basım). Seçkin Yayınevi.
  • Data-Science. 2024. An Intuitive Explanation of Data Science Concepts. Part I: DS, AI, ML, and DL in Simple Words. https://data-science-ua.com/blog/an-intuitive-explanation-of-data-science-concepts-part-l-ds-ai-ml-and-dl-in-simple-words/ [Accessed March 15, 2024].
  • Davila-Santiago, E., Cheng Shi, C., Mahadwar, G., Medeghini, B., Insinga, L., Hutchinson, R., Good, S., Jones, G.D. 2022. Machine learning applications for chemical fingerprinting and environmental source tracking using non-target chemical data. Environ. Sci. Technol. 56, 4080–4090. https://doi.org/10.1021/acs.est.1c06655.
  • Demuth, H., Beale, M., Hagan, M. 2008. Neural network. The MathWorks, Inc., 906s.
  • De Lima, R.P., Duarte, D., Nicholson, C., Slatt, R., Marfurt, K.J. 2020. Petrographic microfacies classification with deep convolutional neural networks. Comput. Geosci., 142, 104481.
  • DeTore, A.W. 1989. An introduction to expert systems. J. Insur. Med., 21, 233–236.
  • Di Noia A., Hasekamp O.P. 2018. Neural networks and support vector machines and their application to aerosol and cloud remote sensing: a review. Springer Series in Light Scattering, Springer, 279-329.
  • Dobbelaere, M.R., Ureel, Y., Vermeire, F.H., Tomme, L., Stevens, C.V., Van Geem, K.M. 2022. Machine learning for physicochemical property prediction of complex hydrocarbon mixtures. Ind. Eng. Chem. Res. 61, 8581–8594. https://doi.org/10.1021/acs.iecr.2c00442.
  • Dorfling, C., Akdogan, G., Bradshaw, S.M., Eksteen, J.J., 2013. Modelling of an autoclave used for high pressure sulphuric acid/oxygen leaching of first stage leach residue, Part 2: model application. Miner. Eng. 53, 213–219. https://doi.org/10.1016/ J.MINENG.2013.03.011.
  • Dupont B., Vingerhoets P., Tant P., Vanthournout K., Cardinaels W., De Rybel T., Peeters E., Belmans R. 2012. Linear breakthrough project: Large-scale implementation of smart grid technologies in distribution grids. in: Proc 3rd IEEE PES Innov Smart Grid Technol (ISGT Europe), IEEE, 1–8.
  • Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Williams, M.D. 2021. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.
  • Eberhart, R.C., Shi, Y. 2007. Computational intelligence concepts to implementations, Morgan Kaufmann, 467.
  • Elmas, C. 2003. Yapay Sinir Ağları. Seckin Yayıncılık, Ankara.
  • Emeritus. 2024. Financial Digital Transformation: What is It, Its Benefits and Challenges. https://emeritus.org/in/learn/financial-digital-transformation/ [Accessed March 15, 2024].
  • Eskandari - Khanghahi, M., Tavakkoli - Moghaddam, R., Taleizadeh, A. A., Amin, S. H. 2018. Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Engineering Applications of Artificial Intelligence, 71, 236-250.
  • Faster Capital. 2024. Deep Learning. https://fastercapital.com/keyword/deep-learning.html [Accessed March 15, 2024].
  • Freeman B.S., Taylor G., Gharabaghi B., J. 2018. The Forecasting air quality time series using deep learning, J. Air Waste Manage. Assoc., 68, 866-886.
  • Feng, X.T., Seto, M. 1999. A new method of modelling the rock microfracturing process in double-torsion experiments using neural networks. International Journal for Numerical and Analytical Methods in Geomechanics, 23, 905-923.
  • Folorunso, I., Abikoye, O., Jimoh, R., Raji, K. 2012. A rule-based expert system for mineral identification. J. Emerg. Trends Comput. Inf. Sci., 3, 205–210.
  • Fuerstenau, M.C., Han, K.N. 2003. Principles of Mineral Processing. Society for Mining, Metallurgy, and Exploration.
  • Fuerstenau, D.W., De, A., Kapur, P.C. 2004. Linear and nonlinear particle breakage process in comminution systems. International Journal of Mineral Processing, 74, 317-327.
  • Glen, T., Nwailab, H.E., Frimmele, F., Steven, E., Zhangb, C.D, Julie, E., Bourdeauc, Leon C.K. Tolmayg, R.J., Durrheima, Y.G. 2022. The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach, ResourcesPolicy, V78, 102851.
  • Gholamrezaei, A., Shabbooei, A. R., Ghaferin, S. A. 2023. Application of novel and green technology in industry. International journal of industrial engineering and operational research, 5(1), 1-7.
  • Goldberg, E., Scheringer, M., Bucheli, T.D., Hungerbuhler, K. 2015. Prediction of nanoparticle transport behavior from physicochemical properties: machine learning provides insights to guide the next generation of transport models. Environ. Sci-Nano 2 (4), 352–360.
  • Gomez-Flores, A., Solongo, S.K., Heyes, G.W., Ilyas, S., Kim, H. 2020. Bubble – particle interactions with hydrodynamics, XDLVO theory and surface roughness for flotation in an agitated tank using CFD simulations. Miner. Eng 152, 106368.
  • Gonzalez, G.D., Miranda, D., Casali, A., Vallebuona, G. 2008. Detection and identification of ore grindability in a semiautogenous grinding circuit model using wavelet transform variances of measured variables. Int. J. Miner. Process. 89, 53–59. https:// doi.org/10.1016/j.minpro.2008.09.002.
  • Groenewald, J.W.de V., Coetzer, L.P., Aldrich, C. 2006. Statistical monitoring of a grinding circuit: an industrial case study. Miner. Eng. 19, 1138–1148. https://doi. org/10.1016/j.mineng.2006.05.009.
  • Guyot, O., Monredon, T., LaRosa, D., Broussaud, A. 2004. VisioRock, an integrated vision technology for advanced control of comminution circuits, Minerals Engineering, vol.17, 1227–1235.
  • Gurney, K. 2018. An Introduction to Neural Networks. CRC Press: Boca Raton, FL, USA.
  • Hale, S.E., Arp, H.P.H., Schliebner, I., Neumann, M. 2020. Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH. Environ. Sci. Eur. 32, 155. https://doi.org/ 10.1186/s12302-020-00440-4.
  • Hassanien, A.E. 2020. Advances in Intelligent Systems and Computing, The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Volume 921, AMLTA, EGYPT, DOI:10.1007/978-3-319-74690-6.
  • Haykin, S. 2009. Neural Networks and Learning Machines. Pearson Education Ltd, New Jersey, USA. 906.
  • Hawkes, A. D. 2010. Estimating marginal CO2 emissions rates for national electricity systems. Energy Policy, 38 (10), 5977–5987.
  • Hellingrath, B., Lechtenberg, S. 2019. Applications of artificial intelligence in supply chain management and logistics: focusing onto recognition for supply chain execution. The Art of Structuring: Bridging the Gap Between Information Systems Research and Practice, 283-296.
  • Hogarth, R.M., Lejarraga, T., Soyer, E. 2015. The Two Settings of Kind and Wicked Learning Environments. Curr. Dir. Psychol. Sci. 24 (5), 379–385.
  • Horrocks, T., Wedge, D., Holden, E.J., Kovesi, P., Clarke, N., Vann, J. 2015. Classification of gold-bearing particles using visual cues and cost-sensitive machine learning. Math. Geosci. 47, 521–545. https://doi.org/10.1007/s11004-015-9597-7.
  • Hosseini, M.R., Shirazi, H.H.A., Massinaei, M., Mehrshad, N. 2015. Modeling the Relationship between Froth Bubble Size and Flotation Performance Using Image Analysis and Neural Networks. Chem. Eng. Commun. 202 (7), 911–919.
  • Hu, W., Hadler, K., Neethling, S.J., Cilliers, J.J. 2013. Determining flotation circuit layout using genetic algorithms with pulp and froth models. Chem. Eng. Sci. 102, 32–41.
  • Huang, Y. 1999. Application of artificial neural networks to predictions of aggregate quality parameters. International Journal of Rock Mechanics and Mining Sciences, 36, 551-561.
  • Interchange. 2024. What is industry 4.0. https://blog.isa.org/what-is-industry-40. [Accessed March 15, 2024].
  • Izadi, H., Sadri, J., Bayati, M. 2017. An intelligent system for mineral identification in thin sections based on a cascade approach. Comput. Geosci., 99, 37–49.
  • Jahedsaravani, A., Marhaban, M.H., Massinaei, M. 2014. Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks. Miner. Eng. 69, 137–145. https://doi.org/10.1016/j.mineng.2014.08.003.
  • Jackson, P.C. 2019. Introduction to artificial intelligence, Mineola New York: Dover Publications Inc., 458, ISBN 0-486-24864-X.
  • Jeong, J., Choi, J. 2022. Artificial intelligence-based toxicity prediction of environmental chemicals: future directions for chemical management applications. Environ. Sci. Technol. 56, 7532–7543. https://doi.org/10.1021/acs.est.1c07413.
  • Joshi, A.V. 2020. Machine learning and artificial intelligence, Springer International Publishing, 10, 978-3, ISBN-13:978-3030266219
  • Kang, C., Zhou, T., Chen, Q., Xu, Q., Xia, Q., Ji, Z. 2012. Carbon emission flow in networks, Sci Rep-UK. 2, 479.
  • Kahraman, S., Altun, H., Tezekici, B.S., Fener, M. 2006. Sawability prediction of carbonate rocks from shear strength parameters using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 43, 157-164.
  • Kamel, H. 2011. Neural Network Application for Structure Design Optimization of Thin-Wall Structures. International Mechanical Engineering Congress and Exposition, ASME 2011, IMECE 2011, vol 9 (American Society of Mechanical Engineers Digital Collection). 41–50.
  • Knifexns. 2024. https://knifexns.bodegalostoneles.com/enx/machine-learning-ai/ [Accessed March 15, 2024].
  • Karami, D., 2022. Supply Chain Network Design Using Particle Swarm Optimization (PSO) Algorithm. International journal of industrial engineering and operational research, 4(1), 1-8.
  • Kecman, V. 2001. Learning and Soft Computing: Support Vector Machines, Neural Networks and Fuzzy Logic Models, A Bradford Book, The MIT Pres, Cambridge, Massachusetts, London, England.
  • Killeen, P., Ding, B,, Kiringa, I., Yeap T. 2019. IoT-based predictive maintenance for fleet management Procedia Comput. Sci. 151, 607–13.
  • Kistner, M., Jemwa, G.T., Aldrich, C. 2013. Monitoring of mineral processing systems by using textural image analysis. Miner. Eng. 52, 169–177. https://doi.org/10.1016/j. mineng.2013.05.022.
  • LeCun, Y., Bengio, Y., Hinton, G. 2015. Deep learning, Nature, 521, 436.
  • Lei, L., Pang, R., Han, Z., Wu, D. 2023. Current applications and future impact of machine learning in emerging contaminants: a review. Crit. Rev. Environ. Sci. Technol. 1–19. https://doi. org/10.1080/10643389.2023.2190313.
  • le Roux, J.D., Craig, I.K., Hulbert, D.G., Hinde, A.L. 2013. Analysis and validation of a run-of-mine ore grinding mill circuit model for process control. Miner. Eng. 43, 121–134. https://doi.org/10.1016/j.mineng.2012.10.009.
  • Li X., Yao X. 2020. Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic? —a simulated study on china’s coal capacity cut and carbon tax, Energy Policy 138. 111232.
  • Li, Y.G., Jiang, P., She, Q., Lin, G. 2018. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Environ. Pollut. 241, 1115–1127. https://doi.org/10.1016/j.envpol.2018.05.072.
  • Lipton, Z.C., Berkowitz, J., Elkan, C. 2015. A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019v1, https://doi.org/10.48550/arXiv.1506.00019.
  • Liu Y., Wu L. 2016. Geological disaster recognition on optical remote sensing images using deep learning. Procedia Computer Science, 91, 566-575.
  • Liu, H., Zhong, C., Alnusair, A., Islam, S.R.2021. FAIXID: A framework for enhancingai explainability of intrusion detection results using data cleaning techniques. J.Netw. Syst. Manag., 29, 1–30.
  • López, A., Ramil, A., Pozo-Antonio, J., Fiorucci, M., Rivas, T. 2017. Automatic Identification of Rock-Forming Minerals in Granite Using Laboratory Scale Hyperspectral Reflectance Imaging and Artificial Neural Networks. J. Nondestruct. Eval., 36, 52.
  • Lobo, A., Garcia, E., Barroso, G., Martí, D., Fernandez-Turiel, J.L., Ibáñez-Insa, J. 2021. Machine-learning for mineral identification and ore estimation from hyperspectral imagery in tin-tungsten deposits. Remote Sens., 13, 3258.
  • Lotfi, R., Mehrjerdi, Y. Z., Pishvaee, M. S., Sadeghieh, A., Weber, G. W. 2021. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 11(2), 221.
  • Lotfi, R., Sheikhi, Z., Amra, M., AliBakhshi, M., Weber, G.W. 2021. Robust optimization of risk-aware, resilient and sustainable closed-loop supply chain network design with Lagrange relaxation and fix-and-optimize. International Journal of Logistics Research and Applications, 1-41.
  • Mahmud, K., Khan, B., Ravishankar, J., Ahmadi, A., Siano, P. 2020. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview, Renew Sustain Energy Rev. 127, 109840.
  • Maleki, E. 2023. Resiliency in supply chain. International Journal of Industrial Engineering and Operational Research, 5(1), 8-18.
  • Marshall, J.A., Bonchis, A., Nebot, E., Scheding, S. 2016. Robotics in Mining. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham., 1549-1576. https://doi.org/10.1007/978-3-319-32552-1_59.
  • Masampally, V.S., Pareek, A., Nadimpalli, N.R.V., Runkana, V. 2023. Artificial Intelligence for Monitoring and Optimization of an Integrated Mineral Processing Plant. Trans Indian Inst Met. https://doi.org/10.1007/s12666-023-03093-y.
  • Massinaei, M., Doostmohammadi, R. 2010. Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques. Miner. Eng. 23 (2), 83–90.
  • Mathworks, C. 2020. Predictive Maintenance Toolbox TM User’s Guide.
  • Mehmet, A.C.I., Doğansoy, G. A. 2022. Makine Öğrenmesi ve Derin Öğrenme Yöntemleri Kullanılarak E-Perakende Sektörüne Yönelik Talep Tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1325-1340.
  • Min, H. 2010. Artificial intelligence in supply chain management: theory and applications. International Journal of Logistics: Research and Applications, 13(1), 13-39.
  • Mishra, K.A., 2021. AI4R2R (AI for Rock to Revenue): A Review of the Applications of AI in Mineral Processing. Minerals, 11, 1118.
  • Misra, N.N., Dixit, Y., Al -Mallahi, A., Bhullar, M.S., Upadhyay, R., Martynenko, A. 2020. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9), 6305-6324.
  • Mokhtari, K.E., Higdon, B.P., Basar, A. 2019. Interpreting financial time series with SHAP values. In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering, Markham, ON, Canada, 4–6 November 2019.166–172.
  • Moolman, D.W., Aldrich, C., Vandeventer, J.S.J., Bradshaw, D.J. 1995. The interpretation of flotation froth surfaces by using digital image-analysis and neural networks. Chem. Eng. Sci. 50 (22), 3501–3513.
  • Nabiyev, V.V. 2003. Yapay Zeka, Seckin Yayıncılık, Ankara.
  • Nakhaei, F., Irannajad, M. 2013. Comparison between neural networks and multiple regression methods in metallurgical performance modeling of flotation column. Physicochem. Probl. Mi 49 (1), 255–266.
  • Nakhaei, F., Mosavi, M.R., Sam, A., Vaghei, Y. 2012. Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. Int. J. Miner. Process. 110, 140–154.
  • Nakhaeie, F., Sam, A., Mosavi, M.R. 2013. Concentrate grade prediction in an industrial flotation column using artificial neural network. Arab. J. Sci. Eng. 38 (5), 1011–1023. https://doi.org/10.1007/s13369-012-0350-y.
  • Nazeri, A., Keshavarzi, M. 2019. Assessing the Performance of Branches of Refah Bank in Tehran Province by Combining Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) Algorithms in Fuzzy Conditions. International journal of industrial engineering and operational research, 1(1), 11.
  • Nikookar, E., Varsei, M., Wieland, A. 2021. Gaining from disorder: Making the case for antifragility in purchasing and supply chain management. Journal of Purchasing and Supply Management, 27(3), 100699.
  • Nwaila, G., Frimmel, H., Zhang, S.E., Bourdeau, J.E., Tolmay, L.C.K., Durrheim, R.J., Ghorbani, Y. 2022. The minerals industry in the era of digital transition: An energy-efficient and environmentally conscious approach, Resources Policy, Volume 78, 1-18, 102851.
  • Ojha, R., Jaiswal, C. M. 2023. SAP S/4HANA Asset Management Configure, Equip, and Manage your Enterprise, APRESS Berkeley, CA.
  • Okada, N., Maekawa, Y., Owada, N., Haga, K., Shibayama, A., Kawamura, Y. 2020. Automated identification of mineral types and grain size using hyperspectral imaging and deep learning for mineral processing. Minerals, 10, 809.
  • Oliker, N., Ostfeld, A. 2014. A coupled classification – evolutionary optimization model for contamination event detection in water distribution systems. Water Res. 51, 234–245. https://doi.org/10.1016/j.watres.2013.10.060.
  • Qin, S.J. 2018. Special issue on big data: data science for process control and operations. J. Process Control 67, iii. https://doi.org/10.1016/S0959-1524(18)30086-6.
  • Öztemel, E. 2003. Yapay Sinir Ağları. Papatya Yayıncılık, İstanbul.
  • Pampel, F.C. 2000. Logistic Regression: A Primer Sage Univ. Press132, 98.
  • Pandian, D.A.P. 2019. Artificial intelligence application in smart warehousing environment for automated logistics. Journal of Artificial Intelligence and Capsule Networks, 1(2), 63-72.
  • Perez, C.A., Saravia, J.A., Navarro, C.F., Schulz, D.A., Aravena, C.M., Galdames, F.J. 2015. Rock lithological classification using multi-scale Gabor features from subimages, and voting with rock contour information. International Journal of Mineral Processing, 144, 56–64.
  • Pirouzan, D., Yahyaei, M., Banisi, S. 2014. Pareto based optimization of flotation cells configuration using an oriented genetic algorithm. Int. J. Miner. Process., 126, 107–116.
  • Pournader, M., Ghaderi, H., Hassanzadegan, A., Fahimnia, B. 2021. Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 108250.
  • Prabhavathy, P., Tripathy, B., Venkatesan, M. 2019. Unsupervised learning method for mineral identification from hyperspectral data., In Proceedings of the International Conference on Innovations in Bio-Inspired Computing and Applications, Gunupur, India, Springer: Cham, Switzerland, 148–160.
  • Ramil, A., López, A., Pozo-Antonio, J., Rivas, T. 2018. A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks. Measurement, 117, 90–95.
  • Ramujee K. 2013. Strength Properties of Polypropylene Fiber reinforced Concrete. International Journal of Innovative Reaserch in Science, Engineering and Technology, 2 (8), 3409-3413.
  • Ren, C.C., Yang, J.G., Liang, C. 2015. Estimation of Copper Concentrate Grade Based on Color Features and Least-Squares Support Vector Regression. Physicochem. Probl. Mi. 51 (1), 163–172.
  • Rhosonics. 2024. Control strategies for flotation. https://rhosonics.com/insight/blog/control-strategies-for-flotation/ [Accessed March 15, 2024].
  • Sağıroğlu, S., Besdok, E., Erler, M. 2003. Muhendislikte Yapay Zekâ Uygulamaları- I, Ufuk Yayıncılık, Kayseri.
  • Semwayo, D.T., Ajoodha, R. 2021. A Causal Bayesian Network Model for Resolving Complex Wicked Problems. In: 2021 IEEE International IOT Electronics. and. Mechatronics. Conference. (IEMTRONICS), 1–8.
  • Siler-Evans K., Azevedo I. L., Morgan M. G. 2012. Marginal emissions factors for the us electricity system, Environ Sci Technol 46 (9), 4742–4748.
  • Ssempijja, M.N., Namango, S., Ochola, J., Mubiru, P.K. 2021. Application of Markov chains in manufacturing systems: A review. International journal of industrial engineering and operational research, 3(1), 1-13.
  • Swiss Cognitive. 2024. What is Artificial Intelligence? https://swisscognitive.ch/2020/11/24/artificial-intelligence-2/ [Accessed March 15, 2024].
  • Tabassum Z, Samantaray R, R., Mohammadi S, H., Fathima A. 2024. Artificial Intelligence and Blockchain Technology for Secure Smart Grid and Power Distribution Automation, AI and Blockchain Applications in Industrial Robotics, IGI GLOBAL Chapter 9, 27.
  • Tang, D.G., Milliken, K.L., Spikes, K.T. 2020. Machine learning for point counting and segmentation of arenite in thin section. Mar. Pet. Geol., 120, 104518.
  • Tessier, J., Duchesne, C., Bartolacci, G. 2007. A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Miner. Eng. 20, 1129–1144. https://doi.org/10.1016/j.mineng.2007.04.009.
  • Thomas, D. S. 2018. The Costs and Benefits of Advanced Maintenance in Manufacturing (Gaithersburg, MD)
  • Thomas, L., Zhou, Y., Long, C., Wu, J., Jenkins, N. 2019. A general form of smart contract for decentralized energy systems management, Nat Energy 4 (2), 140–149.
  • Thomson, R.C., Harrison, G.P., Chick, J.P. 2017. Marginal greenhouse gas emissions displacement of wind power in Great Britain, Energy Policy, 101, 201–210.
  • Thurley, M.J. 2009. Automated online measurement of particle size distribution using 3D range data. IFAC Proc. 42, 134–139. https://doi.org/10.3182/20091014-3-CL-4011. 00025.
  • Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., Floridi, L. 2022. The ethics of algorithms: Key problems and solutions. AI Soc., 37, 215–230.
  • Tyagi, A,K, Tiwari, S. 2024. The Future of Artificial Intelligence in Blockchain Applications, e-Book: Machine Learning Algorithms Using Scikit and TensorFlow Environments, Mendeley, 28.
  • Umucu, Y. 2011. Kireçtaşı örneğinin yapay sinir ağları ile öğütme işlemlerinin modellenmesi ve kinetik modelle kıyaslanması, SDÜ Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, PhD, 457, Isparta, Türkiye.
  • Umucu, Y., Deniz, V., Bozkurt, V., Çağlar, M.F. 2016. The evaluation of grinding process using artificial neural network, International Journal of Mineral Processing, 146, 46-53.
  • Wang, J.S., Han, S. 2015. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm. Comput. Intel. Neurosc., 1-10.
  • Wang, Q., Zhang, X., Tang, B., Ma, Y., Xing, J., Liu, L. 2021. Lithology identification technology using BP neural network based on XRF. Acta Geophys., 69, 2231–2240.
  • Wordstream. 2024. 10 Companies Using Machine Learning in Cool Ways https://www.wordstream.com /blog/ws/2017/07/28/machine-learning-applications [Accessed March 15, 2024].
  • Wong, K.K.L. 2023. Cybernetical Intelligence: Engineering Cybernetics with Machine Intelligence, e-Book, Wiley-IEEE Press, 432.
  • Zhao, R., Deutz, P., Neighbour, G., McGuire, M. 2012. Carbon emissions intensity ratio: an indicator for an improved carbon labelling scheme, Environ Res Lett 7 (1), 014014.
  • Zhou, P., Chai, T., Wang, H. 2009. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Trans. Auto. Sci. Eng. 6, 730–743. https://doi. org/10.1109/TASE. 2008.2011562.
  • Zhou, Y,J. Wu, G.S., Long, C. 2020. Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community, Appl. Energy, 278, 115671.
  • Zulu, M.L.T., Carpanen, R.P., Tiako, R. A. Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks. Energies 2023, 16, 1786. https://doi.org/10.3390/en16041786.
There are 156 citations in total.

Details

Primary Language English
Subjects Chemical-Biological Recovery Techniques and Ore Dressing
Journal Section Collection
Authors

Yakup Umucu 0000-0002-6317-4070

Vedat Deniz 0000-0003-4098-959X

Yaşar Hakan Gürsoy 0000-0001-8987-7818

Publication Date October 1, 2025
Submission Date March 20, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2025 Volume: 63 Issue: 2

Cite

APA Umucu, Y., Deniz, V., & Gürsoy, Y. H. (2025). Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology. Bilimsel Madencilik Dergisi, 63(2), 67-85. https://doi.org/10.30797/madencilik.1456066
AMA Umucu Y, Deniz V, Gürsoy YH. Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology. Mining. October 2025;63(2):67-85. doi:10.30797/madencilik.1456066
Chicago Umucu, Yakup, Vedat Deniz, and Yaşar Hakan Gürsoy. “Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology”. Bilimsel Madencilik Dergisi 63, no. 2 (October 2025): 67-85. https://doi.org/10.30797/madencilik.1456066.
EndNote Umucu Y, Deniz V, Gürsoy YH (October 1, 2025) Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology. Bilimsel Madencilik Dergisi 63 2 67–85.
IEEE Y. Umucu, V. Deniz, and Y. H. Gürsoy, “Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology”, Mining, vol. 63, no. 2, pp. 67–85, 2025, doi: 10.30797/madencilik.1456066.
ISNAD Umucu, Yakup et al. “Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology”. Bilimsel Madencilik Dergisi 63/2 (October2025), 67-85. https://doi.org/10.30797/madencilik.1456066.
JAMA Umucu Y, Deniz V, Gürsoy YH. Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology. Mining. 2025;63:67–85.
MLA Umucu, Yakup et al. “Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology”. Bilimsel Madencilik Dergisi, vol. 63, no. 2, 2025, pp. 67-85, doi:10.30797/madencilik.1456066.
Vancouver Umucu Y, Deniz V, Gürsoy YH. Artificial Intelligence In Mineral Processing: Transforming Mining Operations Through Smart Technology. Mining. 2025;63(2):67-85.