Research Article
BibTex RIS Cite
Year 2024, , 24 - 33, 28.12.2024
https://doi.org/10.24998/maeusabed.1593896

Abstract

References

  • Ahmed, J., Green, R., Alauddin, M. H., Saha, G., 2022. Explainable machine learning approaches to assess COVID-19 vaccination uptake. Preprints. (DOI: 10.20944/preprints202206.0115.v1)
  • Alharbi, R., Chan-Olmsted, S., Chen, H., Thai, M. T., 2024. Deep learning framework with multi-perspective social behaviors for vaccine hesitation. Social Network Analysis and Mining 14, 140. (DOI: 10.1007/s13278-024-01301-1)
  • Altarawneh, L., 2023. Interpretable deep learning and transfer learning-based spatial-temporal modeling for vaccines demand prediction. Doctoral Dissertation, Binghamton University.
  • Ayachit, S. S., Kumar, T., Deshpande, S., Sharma, N., Chaurasia, K., Dixit, M., 2020. Predicting H1N1 and seasonal flu: Vaccine cases using ensemble learning approach. In: Proc. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), IEEE, pp. 172-176.
  • CDC, 2012. 2009 H1N1 Pandemic (H1N1pdm09 virus). Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html (Accessed: 14 October 2024).
  • Cheong, Q., Au-Yeung, M., Quon, S., Concepcion, K., Kong, J. D., 2021. Predictive modeling of vaccination uptake in US counties: A machine learning–based approach. Journal of Medical Internet Research 23(11), e33231.
  • Du, J., Xu, J., Song, H., Liu, X., Tao, C., 2017. Optimization on machine learning-based approaches for sentiment analysis on HPV vaccines-related tweets. Journal of Biomedical Semantics 8, 1–7.
  • Ebulue, C. C., Ekkeh, O. V., Ebulue, O. R., Ekesiobi, C. S., 2024. Leveraging machine learning for vaccine distribution in resource-limited settings. International Medical Science Research Journal 4(5), 544–557. (DOI: 10.51594/imsrj.v4i5.1120)
  • Goswami, M., Sebastian, N. J., 2022. Performance analysis of logistic regression, KNN, SVM, Naïve Bayes classifier for healthcare application during COVID-19. In: Proc. Innovative Data Communication Technologies and Application: ICIDCA 2021, Springer, Singapore, pp. 645–658.
  • Gupta, H., Verma, O. P., 2023. Vaccine hesitancy in the post-vaccination COVID-19 era: A machine learning and statistical analysis-driven study. Evolutionary Intelligence 16(3), 739–757.
  • Harding, A. T., Heaton, N. S., 2018. Efforts to improve the seasonal influenza vaccine. Vaccines 6(19). (DOI: 10.3390/vaccines6020019)
  • Ing, S. H., Abdullah, A. A., Harun, N. H., Kanaya, S., 2021. COVID-19 mRNA vaccine degradation prediction using LR and LGBM algorithms. Journal of Physics: Conference Series 1997(1), 012005.
  • Kim, J. S., 2021. Covid-19 prediction and detection using machine learning algorithms: CatBoost and linear regression. American Journal of Theoretical and Applied Statistics 10(5), 208.
  • Kim, S. H., 2018. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt. Viruses 10(3), 121. (DOI: 10.3390/v10030121)
  • Larson, H. J., Jarrett, C., Eckersberger, E., Smith, D. M. D., Paterson, P., 2014. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature. Vaccine 32(19), 2150–2159. (DOI: 10.1016/j.vaccine.2014.01.081)
  • Lincoln, T. M., Schlier, B., Strakeljahn, F., et al., 2022. Taking a machine learning approach to optimize prediction of vaccine hesitancy in high-income countries. Scientific Reports 12, 2055. (DOI: 10.1038/s41598-022-05915-3)
  • Lundberg, S. M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774.
  • Monath, T. P., 2013. Vaccines against diseases transmitted from animals to humans: A one health paradigm. Vaccine 31(44), 4859–4864. (DOI: 10.1016/j.vaccine.2013.07.037)
  • Nuwarda, R. F., Rozek, L. S., Nihlén Fahlquist, J., et al., 2021. Socioeconomic and cultural influences on vaccine uptake. Vaccine 39(15), 2000–2012. (DOI: 10.1016/j.vaccine.2021.02.040)
  • Pappaioanou, M., Gramer, M., 2010. Lessons from Pandemic H1N1 2009 to Improve Prevention, Detection, and Response to Influenza Pandemics from a One Health Perspective. ILAR Journal 51(3), 268–280. (DOI: 10.1093/ilar.51.3.268)
  • Putri, V. M., Masjkur, M., Suhaeni, C., 2021. Performance of SMOTE in a random forest and naive Bayes classifier for imbalanced Hepatitis-B vaccination status. Journal of Physics: Conference Series 1863(1), 012073.
  • Qorib, M., Oladunni, T., Denis, M., Ososanya, E., Cotae, P., 2023. Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset. Expert Systems with Applications 212, 118715.
  • Suprayogi, S., Sari, C. A., Rachmawanto, E. H., 2022. Sentiment analysis on Twitter using the K-Nearest Neighbors (KNN) algorithm against COVID-19 vaccination. Journal of Applied Intelligent Systems 7(2), 135–145.
  • To, Q. G., To, K. G., Huynh, V. A. N., Nguyen, N. T., Ngo, D. T., Alley, S. J., Vandelanotte, C., 2021. Applying machine learning to identify anti-vaccination tweets during the COVID-19 pandemic. International Journal of Environmental Research and Public Health 18(8), 4069.

Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data

Year 2024, , 24 - 33, 28.12.2024
https://doi.org/10.24998/maeusabed.1593896

Abstract

This study examines H1N1 and seasonal flu vaccination behaviors using machine learning models and explainable artificial intelligence (XAI) techniques. Utilizing data from the National 2009 H1N1 Influenza Survey, we developed a predictive framework employing models such as CatBoost, XGBoost, and LightGBM. CatBoost outperformed others with an accuracy of 0.696 and an F1 score of 0.688. SHAP (Shapley Additive Explanations) was used for interpretability, providing both global insights, such as the critical role of doctor recommendations, and local insights, highlighting individual decision factors. Our findings underscore the importance of addressing vaccine skepticism and improving healthcare communication to enhance vaccination uptake. These results contribute to public health strategies aimed at increasing immunization coverage and preparing for future pandemics.

References

  • Ahmed, J., Green, R., Alauddin, M. H., Saha, G., 2022. Explainable machine learning approaches to assess COVID-19 vaccination uptake. Preprints. (DOI: 10.20944/preprints202206.0115.v1)
  • Alharbi, R., Chan-Olmsted, S., Chen, H., Thai, M. T., 2024. Deep learning framework with multi-perspective social behaviors for vaccine hesitation. Social Network Analysis and Mining 14, 140. (DOI: 10.1007/s13278-024-01301-1)
  • Altarawneh, L., 2023. Interpretable deep learning and transfer learning-based spatial-temporal modeling for vaccines demand prediction. Doctoral Dissertation, Binghamton University.
  • Ayachit, S. S., Kumar, T., Deshpande, S., Sharma, N., Chaurasia, K., Dixit, M., 2020. Predicting H1N1 and seasonal flu: Vaccine cases using ensemble learning approach. In: Proc. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), IEEE, pp. 172-176.
  • CDC, 2012. 2009 H1N1 Pandemic (H1N1pdm09 virus). Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html (Accessed: 14 October 2024).
  • Cheong, Q., Au-Yeung, M., Quon, S., Concepcion, K., Kong, J. D., 2021. Predictive modeling of vaccination uptake in US counties: A machine learning–based approach. Journal of Medical Internet Research 23(11), e33231.
  • Du, J., Xu, J., Song, H., Liu, X., Tao, C., 2017. Optimization on machine learning-based approaches for sentiment analysis on HPV vaccines-related tweets. Journal of Biomedical Semantics 8, 1–7.
  • Ebulue, C. C., Ekkeh, O. V., Ebulue, O. R., Ekesiobi, C. S., 2024. Leveraging machine learning for vaccine distribution in resource-limited settings. International Medical Science Research Journal 4(5), 544–557. (DOI: 10.51594/imsrj.v4i5.1120)
  • Goswami, M., Sebastian, N. J., 2022. Performance analysis of logistic regression, KNN, SVM, Naïve Bayes classifier for healthcare application during COVID-19. In: Proc. Innovative Data Communication Technologies and Application: ICIDCA 2021, Springer, Singapore, pp. 645–658.
  • Gupta, H., Verma, O. P., 2023. Vaccine hesitancy in the post-vaccination COVID-19 era: A machine learning and statistical analysis-driven study. Evolutionary Intelligence 16(3), 739–757.
  • Harding, A. T., Heaton, N. S., 2018. Efforts to improve the seasonal influenza vaccine. Vaccines 6(19). (DOI: 10.3390/vaccines6020019)
  • Ing, S. H., Abdullah, A. A., Harun, N. H., Kanaya, S., 2021. COVID-19 mRNA vaccine degradation prediction using LR and LGBM algorithms. Journal of Physics: Conference Series 1997(1), 012005.
  • Kim, J. S., 2021. Covid-19 prediction and detection using machine learning algorithms: CatBoost and linear regression. American Journal of Theoretical and Applied Statistics 10(5), 208.
  • Kim, S. H., 2018. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt. Viruses 10(3), 121. (DOI: 10.3390/v10030121)
  • Larson, H. J., Jarrett, C., Eckersberger, E., Smith, D. M. D., Paterson, P., 2014. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature. Vaccine 32(19), 2150–2159. (DOI: 10.1016/j.vaccine.2014.01.081)
  • Lincoln, T. M., Schlier, B., Strakeljahn, F., et al., 2022. Taking a machine learning approach to optimize prediction of vaccine hesitancy in high-income countries. Scientific Reports 12, 2055. (DOI: 10.1038/s41598-022-05915-3)
  • Lundberg, S. M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774.
  • Monath, T. P., 2013. Vaccines against diseases transmitted from animals to humans: A one health paradigm. Vaccine 31(44), 4859–4864. (DOI: 10.1016/j.vaccine.2013.07.037)
  • Nuwarda, R. F., Rozek, L. S., Nihlén Fahlquist, J., et al., 2021. Socioeconomic and cultural influences on vaccine uptake. Vaccine 39(15), 2000–2012. (DOI: 10.1016/j.vaccine.2021.02.040)
  • Pappaioanou, M., Gramer, M., 2010. Lessons from Pandemic H1N1 2009 to Improve Prevention, Detection, and Response to Influenza Pandemics from a One Health Perspective. ILAR Journal 51(3), 268–280. (DOI: 10.1093/ilar.51.3.268)
  • Putri, V. M., Masjkur, M., Suhaeni, C., 2021. Performance of SMOTE in a random forest and naive Bayes classifier for imbalanced Hepatitis-B vaccination status. Journal of Physics: Conference Series 1863(1), 012073.
  • Qorib, M., Oladunni, T., Denis, M., Ososanya, E., Cotae, P., 2023. Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset. Expert Systems with Applications 212, 118715.
  • Suprayogi, S., Sari, C. A., Rachmawanto, E. H., 2022. Sentiment analysis on Twitter using the K-Nearest Neighbors (KNN) algorithm against COVID-19 vaccination. Journal of Applied Intelligent Systems 7(2), 135–145.
  • To, Q. G., To, K. G., Huynh, V. A. N., Nguyen, N. T., Ngo, D. T., Alley, S. J., Vandelanotte, C., 2021. Applying machine learning to identify anti-vaccination tweets during the COVID-19 pandemic. International Journal of Environmental Research and Public Health 18(8), 4069.
There are 24 citations in total.

Details

Primary Language English
Subjects One Health, Animal Science, Genetics and Biostatistics
Journal Section Research Article
Authors

Bekir Çetintav 0000-0001-7251-1211

Ahmet Yalçın 0009-0001-6093-8282

Publication Date December 28, 2024
Submission Date November 30, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2024

Cite

APA Çetintav, B., & Yalçın, A. (2024). Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 12(3), 24-33. https://doi.org/10.24998/maeusabed.1593896
AMA Çetintav B, Yalçın A. Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data. Mehmet Akif Ersoy University Journal of Health Sciences Institute. December 2024;12(3):24-33. doi:10.24998/maeusabed.1593896
Chicago Çetintav, Bekir, and Ahmet Yalçın. “Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data”. Mehmet Akif Ersoy University Journal of Health Sciences Institute 12, no. 3 (December 2024): 24-33. https://doi.org/10.24998/maeusabed.1593896.
EndNote Çetintav B, Yalçın A (December 1, 2024) Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data. Mehmet Akif Ersoy University Journal of Health Sciences Institute 12 3 24–33.
IEEE B. Çetintav and A. Yalçın, “Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data”, Mehmet Akif Ersoy University Journal of Health Sciences Institute, vol. 12, no. 3, pp. 24–33, 2024, doi: 10.24998/maeusabed.1593896.
ISNAD Çetintav, Bekir - Yalçın, Ahmet. “Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data”. Mehmet Akif Ersoy University Journal of Health Sciences Institute 12/3 (December 2024), 24-33. https://doi.org/10.24998/maeusabed.1593896.
JAMA Çetintav B, Yalçın A. Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data. Mehmet Akif Ersoy University Journal of Health Sciences Institute. 2024;12:24–33.
MLA Çetintav, Bekir and Ahmet Yalçın. “Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data”. Mehmet Akif Ersoy University Journal of Health Sciences Institute, vol. 12, no. 3, 2024, pp. 24-33, doi:10.24998/maeusabed.1593896.
Vancouver Çetintav B, Yalçın A. Targeting Vaccine Hesitancy A Data-Driven Approach Using AI and Public Health Data. Mehmet Akif Ersoy University Journal of Health Sciences Institute. 2024;12(3):24-33.