Research Article
BibTex RIS Cite
Year 2020, Volume: 5 Issue: 2, 34 - 39, 31.08.2020
https://doi.org/10.24880/maeuvfd.709662

Abstract

References

  • Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun. 2008; 76: 3360-73.
  • Taguchi H, Takahashi M, Yamaguchi H, Osakı T, Komatsu A, Fujıoka Y, et al. Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli O157:H7, strain 6. J Med Microbiol. 2002; 51: 336–43.
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003; 361: 512-19.
  • Flint HJ, Wallace RJ. Obesity and colorectal cancer risk: impact of the gut microbiota and weight-loss diets. Open Obes J. 2010; 2: 50-62.
  • Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011; 60: 631-7.
  • Ahn YJ, Lee CO, Kweon JH, Ahn JW, Park JH. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J Appl Microbiol. 1998; 84: 439-43.
  • Phoem AN, Voravuthikunchai SP. Growth stimulation/inhibition effect of medicinal plants on human intestinal microbiota. J Microbiol Biotechnol Food Sci. 2012; 21: 739-45.
  • Thapa D, Losa R, Zweifel B, Wallace RJ. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology. 2012; 158: 2870-77.
  • Gomes FMS, da Cunha Xavier J, Dos Santos JFS, de Matos YMLS, Tintino SR, de Freitas TS, et al. Evaluation of antibacterial and modifying action of catechin antibiotics in resistant strains. Microb Pathogenesis. 2018; 115: 175-8.
  • Avinc O, Celik A, Gedik G, Yavas A. Natural dye extraction from waste barks of Turkish red pine (Pinus brutia Ten.) timber and eco-friendly natural dyeing of various textile fibers. Fiber Polym. 2013; 14(5): 866-73.
  • Kıvrak I, Kıvrak S, Harmandar M, Cetintaş Y. Phenolic compounds of Pinus brutia Ten.: chemical investigation and quantitative analysis using an ultra-performance liquid chromatography tandem mass spectrometry with electrospray ionization source. Rec Nat Prod. 2013; 7(4): 313-9.
  • Rajani J, Dastar B, Samadi F, Karimi Torshizi MA, Abdulkhani A, Esfandyarpour S. Effect of extracted galactoglucomannan oligosaccharides from pine wood (Pinus brutia) on Salmonella typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. Brit Poultry Sci. 2016; 57(5): 682-92.
  • Ucar MB, Ucar G, Pizzi A, Gonultas O. Characterization of Pinus brutia bark tannin by MALDI-TOF MS and 13C NMR. Ind Crop Prod. 2013; 49: 697-704.
  • Bhattacharya D, Bhattacharya S, Patra MM, Chakravorty S, Sarkar S, Chakraborty W. Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Curr Microbiol. 2016; 73(6): 885-96.
  • Das A, Datta S, Mukherjee S, Bose S, Ghosh S, Dhar P. Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT-Food Sci Technol. 2015; 61(1): 244-50.
  • Dığrak M, İlçim A, Hakkı Alma M. Antimicrobial activities of several parts of Pinus brutia, Juniperus oxycedrus, Abies cilicia, Cedrus libani and Pinus nigra. Phytother Res. 1999; 13(7): 584-87.
  • Yaylaci, F, Kolayli S, Kucuk M, Karaoglu SA, Ulusoy E. Biological activities of trunk bark extracts of five tree species from Anatolia, Turkey. Asian J Chem. 2007; 19(3): 2241-56.
  • Hobson PN. Rumen bacteria. In: Methods in Microbiology. London and New York: Academic Press; 1969. p. 133-149.
  • CLSI (Clinical and Laboratory Standards Institute). M100-S26, Performance standards for antimicrobial susceptibility testing: 26th Informational Supplement, Wayne, PA: CLSI, 2016.
  • Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016; 535: 85-93.
  • Ørskov F, Ørskov I. Escherichia coli serotyping and disease in man and animals. Can J Microbiol. 1992; 38(7): 699-704.
  • Rajkovic A. Microbial toxins and low level of foodborne exposure. Trends Food Sci Tech. 2014; 38(2): 149-57.
  • Gart EV, Suchodolski JS, Welsh Jr TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella Typhimurium and multidirectional communication in the gut. Front Microbiol. 2016; 7: 1827.
  • Kumar VD, Verma PRP, Singh SK. Morphological and in vitro antibacterial efficacy of quercetin loaded nanoparticles against food-borne microorganisms. LWT-Food Sci Technol. 2016; 66: 638-50.
  • Taguri T, Tanaka T, Kouno I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol Pharm Bull. 2006; 29(11): 2226-35.
  • Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol. 2014; 33(8): 1381-90.
  • Shahzad M, Millhouse E, Culshaw S, Edwards CA, Ramage G, Combet E. Selected dietary (poly) phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 2015; 6(3): 719-29.
  • Bernal-Mercado AT, Vazquez-Armenta FJ, Tapia-Rodriguez MR, Islas-Osuna MA, Mata-Haro V, Gonzalez-Aguilar GA. Comparison of single and combined use of catechin, protocatechuic, and vanillic acids as antioxidant and antibacterial agents against uropathogenic Escherichia coli at planktonic and biofilm levels. Molecules. 2018; 23(11): 2813.
  • Lagha AB, Haas B, Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci Rep-UK. 2017; 7: 44815.
  • Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016; 8(2): 78.
  • Hervert-Hernández D, Pintado C, Rotger R, Goñi I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int J Food Microbiol. 2009; 136(1): 119-22.
  • Tabasco R, Sánchez-Patán F, Monagas M, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol. 2011; 28(7): 1345-52.
  • Chung KT, Lu Z, Chou MW. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol. 1998; 36(12): 1053-60.
  • Almajano MP, Carbo R, Jiménez JAL, Gordon MH. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008; 108(1): 55-63.
  • Gwiazdowska D, Juś K, Jasnowska-Małecka J, Kluczyńska K. The impact of polyphenols on Bifidobacterium growth. Acta Biochim Pol. 2015; 62(4): 895-901.
  • Tzounis X, Vulevic J, Kuhnle GGC, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JPM. Flavanol monomer-induced changes to the human faecal microflora. Brit J Nutr. 2008; 99: 782-92.
  • Hervert-Hernández D, Goñi I. Dietary polyphenols and human gut microbiota: a review. Food Rev Int. 2011; 27(2): 154-69.
  • Rodríguez H, de las Rivas B, Gómez-Cordovés C, Muñoz R. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chem. 2008; 107: 664-70.
  • García-Ruiz A, Bartolomé B, Martínez-Rodríguez AJ, Puello E, Martín-Álvarez PJ, Moreno-Arribas MV. Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control. 2008; 19: 835-41.

Influence of Pinus brutia bark extract containing phenolic compounds on some commensal and pathogenic bacteria from the intestinal microflora

Year 2020, Volume: 5 Issue: 2, 34 - 39, 31.08.2020
https://doi.org/10.24880/maeuvfd.709662

Abstract

The microflora of the intestinal tract is vital to many physiological functions, mainly fermentation and processing of dietary components, control of intestinal epithelial cell proliferation, development of the immune system, and protection against pathogens. Plant extracts have potential for treatment options that protect commensal or beneficial microflora in the intestines while eliminating pathogens. The aim of the present study was to investigate the influence of Pinus brutia (Turkish red pine) bark extract containing phenolic compounds on some commensal and pathogenic bacteria from the intestinal microflora using a microdilution method. P. brutia bark extract did not completely inhibit any intestinal bacteria. However, the extract showed a potential inhibitor activity on Salmonella Typhimurium and Staphylococcus aureus from 75 µg/mL, on Escherichia coli and Fusobacterium nucleatum from 150 µg/mL, and on Clostridium perfringens from 300 µg/mL concentrations (P<0.05). Commensal bacteria were observed to be less sensitive to the extract than those of the pathogenic strains. The extract stimulated moderately the growth of Bifidobacterium bifidum from 75 µg/mL dose (P<0.05). The extract did not show any activity on Lactobacillus acidophilus. A potential inhibitor activity was observed for Bifidobacterium infantis and Lactobacillus casei at 600-2400 µg/mL (P<0.05). As a conclusion, P. brutia bark extract, at 75-300 μg/mL dose range, had a potential to restrict pathogenic bacteria in the intestines while protect commensal or beneficial ones. Specified effects might be mainly attributed to its polyphenolic content.

References

  • Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within? Infect Immun. 2008; 76: 3360-73.
  • Taguchi H, Takahashi M, Yamaguchi H, Osakı T, Komatsu A, Fujıoka Y, et al. Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli O157:H7, strain 6. J Med Microbiol. 2002; 51: 336–43.
  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003; 361: 512-19.
  • Flint HJ, Wallace RJ. Obesity and colorectal cancer risk: impact of the gut microbiota and weight-loss diets. Open Obes J. 2010; 2: 50-62.
  • Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011; 60: 631-7.
  • Ahn YJ, Lee CO, Kweon JH, Ahn JW, Park JH. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J Appl Microbiol. 1998; 84: 439-43.
  • Phoem AN, Voravuthikunchai SP. Growth stimulation/inhibition effect of medicinal plants on human intestinal microbiota. J Microbiol Biotechnol Food Sci. 2012; 21: 739-45.
  • Thapa D, Losa R, Zweifel B, Wallace RJ. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology. 2012; 158: 2870-77.
  • Gomes FMS, da Cunha Xavier J, Dos Santos JFS, de Matos YMLS, Tintino SR, de Freitas TS, et al. Evaluation of antibacterial and modifying action of catechin antibiotics in resistant strains. Microb Pathogenesis. 2018; 115: 175-8.
  • Avinc O, Celik A, Gedik G, Yavas A. Natural dye extraction from waste barks of Turkish red pine (Pinus brutia Ten.) timber and eco-friendly natural dyeing of various textile fibers. Fiber Polym. 2013; 14(5): 866-73.
  • Kıvrak I, Kıvrak S, Harmandar M, Cetintaş Y. Phenolic compounds of Pinus brutia Ten.: chemical investigation and quantitative analysis using an ultra-performance liquid chromatography tandem mass spectrometry with electrospray ionization source. Rec Nat Prod. 2013; 7(4): 313-9.
  • Rajani J, Dastar B, Samadi F, Karimi Torshizi MA, Abdulkhani A, Esfandyarpour S. Effect of extracted galactoglucomannan oligosaccharides from pine wood (Pinus brutia) on Salmonella typhimurium colonisation, growth performance and intestinal morphology in broiler chicks. Brit Poultry Sci. 2016; 57(5): 682-92.
  • Ucar MB, Ucar G, Pizzi A, Gonultas O. Characterization of Pinus brutia bark tannin by MALDI-TOF MS and 13C NMR. Ind Crop Prod. 2013; 49: 697-704.
  • Bhattacharya D, Bhattacharya S, Patra MM, Chakravorty S, Sarkar S, Chakraborty W. Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Curr Microbiol. 2016; 73(6): 885-96.
  • Das A, Datta S, Mukherjee S, Bose S, Ghosh S, Dhar P. Evaluation of antioxidative, antibacterial and probiotic growth stimulatory activities of Sesamum indicum honey containing phenolic compounds and lignans. LWT-Food Sci Technol. 2015; 61(1): 244-50.
  • Dığrak M, İlçim A, Hakkı Alma M. Antimicrobial activities of several parts of Pinus brutia, Juniperus oxycedrus, Abies cilicia, Cedrus libani and Pinus nigra. Phytother Res. 1999; 13(7): 584-87.
  • Yaylaci, F, Kolayli S, Kucuk M, Karaoglu SA, Ulusoy E. Biological activities of trunk bark extracts of five tree species from Anatolia, Turkey. Asian J Chem. 2007; 19(3): 2241-56.
  • Hobson PN. Rumen bacteria. In: Methods in Microbiology. London and New York: Academic Press; 1969. p. 133-149.
  • CLSI (Clinical and Laboratory Standards Institute). M100-S26, Performance standards for antimicrobial susceptibility testing: 26th Informational Supplement, Wayne, PA: CLSI, 2016.
  • Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016; 535: 85-93.
  • Ørskov F, Ørskov I. Escherichia coli serotyping and disease in man and animals. Can J Microbiol. 1992; 38(7): 699-704.
  • Rajkovic A. Microbial toxins and low level of foodborne exposure. Trends Food Sci Tech. 2014; 38(2): 149-57.
  • Gart EV, Suchodolski JS, Welsh Jr TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella Typhimurium and multidirectional communication in the gut. Front Microbiol. 2016; 7: 1827.
  • Kumar VD, Verma PRP, Singh SK. Morphological and in vitro antibacterial efficacy of quercetin loaded nanoparticles against food-borne microorganisms. LWT-Food Sci Technol. 2016; 66: 638-50.
  • Taguri T, Tanaka T, Kouno I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol Pharm Bull. 2006; 29(11): 2226-35.
  • Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol. 2014; 33(8): 1381-90.
  • Shahzad M, Millhouse E, Culshaw S, Edwards CA, Ramage G, Combet E. Selected dietary (poly) phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 2015; 6(3): 719-29.
  • Bernal-Mercado AT, Vazquez-Armenta FJ, Tapia-Rodriguez MR, Islas-Osuna MA, Mata-Haro V, Gonzalez-Aguilar GA. Comparison of single and combined use of catechin, protocatechuic, and vanillic acids as antioxidant and antibacterial agents against uropathogenic Escherichia coli at planktonic and biofilm levels. Molecules. 2018; 23(11): 2813.
  • Lagha AB, Haas B, Grenier D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci Rep-UK. 2017; 7: 44815.
  • Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016; 8(2): 78.
  • Hervert-Hernández D, Pintado C, Rotger R, Goñi I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int J Food Microbiol. 2009; 136(1): 119-22.
  • Tabasco R, Sánchez-Patán F, Monagas M, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol. 2011; 28(7): 1345-52.
  • Chung KT, Lu Z, Chou MW. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol. 1998; 36(12): 1053-60.
  • Almajano MP, Carbo R, Jiménez JAL, Gordon MH. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008; 108(1): 55-63.
  • Gwiazdowska D, Juś K, Jasnowska-Małecka J, Kluczyńska K. The impact of polyphenols on Bifidobacterium growth. Acta Biochim Pol. 2015; 62(4): 895-901.
  • Tzounis X, Vulevic J, Kuhnle GGC, George T, Leonczak J, Gibson GR, Kwik-Uribe C, Spencer JPM. Flavanol monomer-induced changes to the human faecal microflora. Brit J Nutr. 2008; 99: 782-92.
  • Hervert-Hernández D, Goñi I. Dietary polyphenols and human gut microbiota: a review. Food Rev Int. 2011; 27(2): 154-69.
  • Rodríguez H, de las Rivas B, Gómez-Cordovés C, Muñoz R. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chem. 2008; 107: 664-70.
  • García-Ruiz A, Bartolomé B, Martínez-Rodríguez AJ, Puello E, Martín-Álvarez PJ, Moreno-Arribas MV. Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control. 2008; 19: 835-41.
There are 39 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Ahu Demirtaş 0000-0003-2942-6243

Publication Date August 31, 2020
Submission Date March 26, 2020
Published in Issue Year 2020 Volume: 5 Issue: 2

Cite

APA Demirtaş, A. (2020). Influence of Pinus brutia bark extract containing phenolic compounds on some commensal and pathogenic bacteria from the intestinal microflora. Veterinary Journal of Mehmet Akif Ersoy University, 5(2), 34-39. https://doi.org/10.24880/maeuvfd.709662

Cited By