Research Article
BibTex RIS Cite

An optimized protocol for the electroporation of NCI H929 multiple myeloma cells

Year 2022, Volume: 7 Issue: 3, 188 - 194, 31.12.2022
https://doi.org/10.24880/maeuvfd.1126466

Abstract

Multiple myeloma cell lines are difficult to transfect with non-viral nucleic acid delivery methods. While electroporation is the most efficient tool for the transfection of most hard-to-transfect cells, human multiple myeloma cells differ in their permissiveness and each cell type require different electroporation conditions for an efficient transgene delivery. In this study, various parameters for NCI H929 human multiple myeloma cells are tested to generate an optimized electroporation protocol. Findings from this paper showed that besides the voltage and capacitance settings, cell count, the cell cycle status of cells, the amount of nucleic acid and removal of death cells all impacted the electroporation efficiency and viable cell count. These results are expected to serve as a starting point and a guide for researchers.

References

  • Batista Napotnik, T., Polajžer, T., & Miklavčič, D. (2021). Cell death due to electroporation - A review. Bioelectrochemistry (Amsterdam, Netherlands), 141, 107871. https://doi.org/10.1016/j.bioelechem.2021.107871
  • Biorad. Gene Pulser Xcell Electroporation System Instruction Manual (Issue 62). https://www.bio-rad.com/sites/default/files/2022-01/10000148530.pdf
  • Brito, J. L., Brown, N., & Morgan, G. J. (2010). Transfection of siRNAs in multiple myeloma cell lines. Methods Mol Biol, 623, 299–309. https://doi.org/10.1007/978-1-60761-588-0_19
  • Brunner, S., Sauer, T., Carotta, S., Cotten, M., Saltik, M., & Wagner, E. (2000). Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Therapy, 7(5), 401–407. https://doi.org/10.1038/sj.gt.3301102
  • Canoy, R. J., Andre, F., Shmakova, A., Wiels, J., Lipinski, M., Vassetzky, Y., & Germini, D. (2020). Easy and robust electrotransfection protocol for efficient ectopic gene expression and genome editing in human B cells. Gene Ther. https://doi.org/10.1038/s41434-020-00194-x
  • Chong, Z. X., Yeap, S. K., & Ho, W. Y. (2021). Transfection types, methods and strategies: a technical review. PeerJ, 9, e11165–e11165. https://doi.org/10.7717/peerj.11165 Fus-Kujawa, A., Prus, P., Bajdak-Rusinek, K., Teper, P., Gawron, K., Kowalczuk, A., & Sieron, A. L. (2021). An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Frontiers in Bioengineering and Biotechnology, 9. https://www.frontiersin.org/article/10.3389/fbioe.2021.701031
  • Hattori, H., Tagawa, S., & Kitani, T. (1995). [Establishment and usage of human multiple myeloma cell line]. Nihon Rinsho, 53(3), 603–609. https://www.ncbi.nlm.nih.gov/pubmed/7699892
  • Hsu, C. Y., & Uludag, H. (2012). A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine. Nat Protoc, 7(5), 935–945. https://doi.org/10.1038/nprot.2012.038
  • Mizrahy, S., Hazan-Halevy, I., Dammes, N., Landesman-Milo, D., & Peer, D. (2017). Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes. Molecular Therapy : The Journal of the American Society of Gene Therapy, 25(7), 1491–1500. https://doi.org/10.1016/j.ymthe.2017.03.001
  • Oyeleye, O., Ogundeji, S., Ola, S., & Omitogun, O. (2016). Basics of animal cell culture: Foundation for modern science. Biotechnology and Molecular Biology Reviews, 11, 6–16. https://doi.org/10.5897/BMBR2016.0261
  • Rols, M.-P. (2017). Parameters Affecting Cell Viability Following Electroporation In Vitro BT - Handbook of Electroporation (D. Miklavčič (ed.); pp. 1449–1465). Springer International Publishing. https://doi.org/10.1007/978-3-319-32886-7_149
  • Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z
  • Shih, T., De, S., & Barnes, B. J. (2019). RNAi Transfection Optimized in Primary Naïve B Cells for the Targeted Analysis of Human Plasma Cell Differentiation. Frontiers in Immunology, 10. https://www.frontiersin.org/article/10.3389/fimmu.2019.01652
  • Steinbrunn, T., Chatterjee, M., Bargou, R. C., & Stühmer, T. (2014). Efficient transient transfection of human multiple myeloma cells by electroporation - An appraisal. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0097443
  • Sun, Y., Pan, J., Zhang, N., Wei, W., Yu, S., & Ai, L. (2017). Knockdown of long non-coding RNA H19 inhibits multiple myeloma cell growth via NF-κB pathway. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-18056-9
Year 2022, Volume: 7 Issue: 3, 188 - 194, 31.12.2022
https://doi.org/10.24880/maeuvfd.1126466

Abstract

References

  • Batista Napotnik, T., Polajžer, T., & Miklavčič, D. (2021). Cell death due to electroporation - A review. Bioelectrochemistry (Amsterdam, Netherlands), 141, 107871. https://doi.org/10.1016/j.bioelechem.2021.107871
  • Biorad. Gene Pulser Xcell Electroporation System Instruction Manual (Issue 62). https://www.bio-rad.com/sites/default/files/2022-01/10000148530.pdf
  • Brito, J. L., Brown, N., & Morgan, G. J. (2010). Transfection of siRNAs in multiple myeloma cell lines. Methods Mol Biol, 623, 299–309. https://doi.org/10.1007/978-1-60761-588-0_19
  • Brunner, S., Sauer, T., Carotta, S., Cotten, M., Saltik, M., & Wagner, E. (2000). Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Therapy, 7(5), 401–407. https://doi.org/10.1038/sj.gt.3301102
  • Canoy, R. J., Andre, F., Shmakova, A., Wiels, J., Lipinski, M., Vassetzky, Y., & Germini, D. (2020). Easy and robust electrotransfection protocol for efficient ectopic gene expression and genome editing in human B cells. Gene Ther. https://doi.org/10.1038/s41434-020-00194-x
  • Chong, Z. X., Yeap, S. K., & Ho, W. Y. (2021). Transfection types, methods and strategies: a technical review. PeerJ, 9, e11165–e11165. https://doi.org/10.7717/peerj.11165 Fus-Kujawa, A., Prus, P., Bajdak-Rusinek, K., Teper, P., Gawron, K., Kowalczuk, A., & Sieron, A. L. (2021). An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Frontiers in Bioengineering and Biotechnology, 9. https://www.frontiersin.org/article/10.3389/fbioe.2021.701031
  • Hattori, H., Tagawa, S., & Kitani, T. (1995). [Establishment and usage of human multiple myeloma cell line]. Nihon Rinsho, 53(3), 603–609. https://www.ncbi.nlm.nih.gov/pubmed/7699892
  • Hsu, C. Y., & Uludag, H. (2012). A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine. Nat Protoc, 7(5), 935–945. https://doi.org/10.1038/nprot.2012.038
  • Mizrahy, S., Hazan-Halevy, I., Dammes, N., Landesman-Milo, D., & Peer, D. (2017). Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes. Molecular Therapy : The Journal of the American Society of Gene Therapy, 25(7), 1491–1500. https://doi.org/10.1016/j.ymthe.2017.03.001
  • Oyeleye, O., Ogundeji, S., Ola, S., & Omitogun, O. (2016). Basics of animal cell culture: Foundation for modern science. Biotechnology and Molecular Biology Reviews, 11, 6–16. https://doi.org/10.5897/BMBR2016.0261
  • Rols, M.-P. (2017). Parameters Affecting Cell Viability Following Electroporation In Vitro BT - Handbook of Electroporation (D. Miklavčič (ed.); pp. 1449–1465). Springer International Publishing. https://doi.org/10.1007/978-3-319-32886-7_149
  • Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z
  • Shih, T., De, S., & Barnes, B. J. (2019). RNAi Transfection Optimized in Primary Naïve B Cells for the Targeted Analysis of Human Plasma Cell Differentiation. Frontiers in Immunology, 10. https://www.frontiersin.org/article/10.3389/fimmu.2019.01652
  • Steinbrunn, T., Chatterjee, M., Bargou, R. C., & Stühmer, T. (2014). Efficient transient transfection of human multiple myeloma cells by electroporation - An appraisal. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0097443
  • Sun, Y., Pan, J., Zhang, N., Wei, W., Yu, S., & Ai, L. (2017). Knockdown of long non-coding RNA H19 inhibits multiple myeloma cell growth via NF-κB pathway. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-18056-9
There are 15 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Ayşe Kızılyer 0000-0001-9895-2242

Publication Date December 31, 2022
Submission Date June 5, 2022
Published in Issue Year 2022 Volume: 7 Issue: 3

Cite

APA Kızılyer, A. (2022). An optimized protocol for the electroporation of NCI H929 multiple myeloma cells. Veterinary Journal of Mehmet Akif Ersoy University, 7(3), 188-194. https://doi.org/10.24880/maeuvfd.1126466