Research Article
BibTex RIS Cite

Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)’nın Yabani Domates Türlerine Yumurta Koyma Tercihlerinin Belirlenmesi

Year 2022, , 1 - 8, 09.06.2022
https://doi.org/10.29048/makufebed.1021661

Abstract

Bu çalışmada beş farklı yabani domates türüne, Tuta absoluta (Meyrick)’nın yumurta koyma tercihleri incelenmiştir. Bu amaçla yabani domates türleri olan Solanum arcanum (LA2152), Solanum habrochaites (LA0094), Solanum lycopersicum (LA0292), Solanum pimpinellifolium (LA0100) ve Solanum pennellii (LA0716) türleri kontrol olarak seçilen hassas tür (S. lycopersicum cv Depar) ile birlikte denemeye alınmıştır. Çalışmadan elde edilen sonuçlara göre, yabani domates türleri içerisinde T. absoluta’nın kontrol türüne oranla daha az yumurta bıraktığı tür S. habrochaites, en fazla yumurta bıraktığı tür ise S. lycopersicum olarak belirlenmiştir. Diğer yabani domates türlerine T. absoluta’nın yumurta bırakma tercihleri yüksekten düşüğe doğru sırası ile S. pimpinellifolium, S. pennellii ve S. arcanum türleri olarak sıralanmışlardır. Uzaklaştırıcı indeks (RI) ile yapılan değerlendirmelerde dişilerin S. habrochaites türünde uzaklaştırıcı etki gösterdiği fakat erkek bireylerde herhangi bir farklılık olmadığı belirlenmiştir. Çalışmada ayrıca erkek bireylerin bitki tercihleri de belirlenmiş ve tüm yabani domates türleri arasında erkek bireylerin tercihleri arasında istatistiksel bir fark bulunmamıştır.

References

  • Abdul-Ridha, M., Alwan, S.L., Helal, S.M., Aziz, K.A. (2012). Alternative hosts of South American tomato moth Tuta absoluta (Gelechiidae: Lepidoptera) in some tomato farms of Najaf Province. Euphrates Journal of Agriculture Science, 4: 130–137.
  • Baier, J.E., Resende, J.T.V., Faria, M.V., Schwarz, K., Meert, L. (2015). Indirect selection of industrial tomato genotypes that are resistant to spider mites (Tetranychus urticae). Genetics and Molecular Research, 14(1): 244-252.
  • Bitew, M.K. (2018). Significant role of wild genotypes of tomato trichomes for Tuta absoluta resistance. Journal of Plant Genetics and Breeding, 2, 104.
  • Cherif A., Verheggen, F. (2019). A review of Tuta absoluta (Lepidoptera: Gelechiidae) host plants and their impact on management strategies. Biotechnology, Agronomy and Society and Environment, 23(4): 270-278.
  • Chunwongse, J., Chunwongse, C., Black, L., Hanson, P. (2002). Molecular mapping of the Ph‐3 gene for late blight resistance in tomato. The Journal of Horticultural Science & Biotechnology, 77: 281–286.
  • Cuthbertson, A.G.S., Mathers, J.J., Blackburn, L.F., Korycinska, A., Luo, W., Jacobson, R.J., Northing, P. (2013). Population development of Tuta absoluta (Meyrick) (Lepidoptera:Gelechiidae) under simulated UK greenhouse conditions. Insects, 4: 185-197.
  • Desneux, N., Han, P., Mansour, R., Arnó, J., Brévault, T., et al. (2021). Integrated Pest Management of Tuta absoluta: practical implementations across different regions around the world. Journal of Pest Science, 95: 17–39.
  • EPPO (2021). European and Mediterranean Plant Protection Organization (EPPO) Global Database. https://gd.eppo.int/taxon/GNORAB/hosts. (Erişim Tarihi: 15.09.2021)
  • Hajjar, R., Hodgkin, T. (2007). The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156: 1–13.
  • Kayahan, A., Şimşek, B., Karaca, İ., Aktaş, H. (2018). Determination of the responses of different tomato species to Tuta absoluta. Scientific Papers. Series B, Horticulture, 62: 431-435.
  • Lanfermeijer, F.C., Warmink, J., Hille, J. (2005). The products of the broken Tm‐2 and the durable Tm‐22 resistance genes from tomato differ in four amino acids. Journal of Experimental Botany, 56: 2925–2933.
  • Maluf, W.R, Silva, V.F., Cardoso, M.G., Gomes, L.A.A., Gonçalves Neto, A.C., Maciel, G.M., Nízio, D.A.C., (2010). Resistance to the South American tomato pinworm Tuta absoluta in high acylsugar and/or high zingiberene tomato genotypes. Euphytica,176: 113-123.
  • Maxted, N., Magos, B.J., Kell, S. (2013). Resource book for preparation of national conservation plans for crop wild relatives and landraces. Rome, Italy: Food and Agriculture Organization of the United Nations Commission on Genetic Resources for Food and Agriculture.
  • Miller, J.C., Tanskley, S.D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics, 80: 437–448.
  • Mohamed, E.S.I., Mahmoud, M.E.E., Elhaj, M.A.M., Mohamed, S.A., and Ekesi, S. (2015). Host plants record for tomato leaf miner Tuta absoluta (Meyrick) in Sudan. European and Mediterranean Plant Protection Organization Bulletin. 45: 108–111.
  • Öztemiz, S. (2012). Domates güvesi (Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) ve biyolojik mücadele. KSÜ Doğa Bilimleri Dergisi, 15(4): 47-57.
  • Parniske, M., Wulff, B.B.H., Bonnema, G., Thomas, C.M., Jones, D.A., Jones, J.D.G. (1999). Homologues of the Cf‐9 disease resistance gene (Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1. Molecular Plant‐Microbe Interactions, 12: 93–102.
  • Pascual-Villalobos, M.J., Robledo, A. (1998). Screening for anti-insect activity in Mediterranean plants. Industrial Crops and Products, 8(3): 183-194.
  • Prasanna, H.C., Sinha, D.P., Rai, G.K., Krishna, R., Kashyap, S.P., Singh, N.K., Malathi, V.G. (2015). Pyramiding Ty‐2 and Ty‐3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathology, 64: 256–264.
  • Seah, S., Yaghoobi, J., Rossi, M., Gleason, C.A., Williamson, V.M. (2004). The nematode‐resistance gene, Mi‐1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theoretical and Applied Genetics, 108: 1635–1642.
  • Sridhar, V., Sadashiva, A.T., Rao, V.K., Swathi, P., Gadad, H.S. (2019a). Trichome and biochemical basis of resistance against Tuta absoluta in tomato genotypes. Plant Genetic Resources: Characterization and Utilization, 17(3): 301–305.
  • Sridhar, V., Naik, O.N., Nitin, K.S., Asokan, R., Swathi, P., Gadad, H. (2019b). Efficacy of integrated pest management tools evaluated against Tuta absoluta (Meyrick) on tomato in India. Journal of Biological Control, 33: 264–262.
  • Tanksley, S.D., McCouch, S.R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277: 1063–1066.
  • Van Deventer, P. (2009). Leafminer Threatens Tomato Growing in Europe. Agriculture and HortiWorld, Fruit and Vegetable Technolgy, 9(2): 10-12.
  • Zamir, D., Eksteinmichelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Czosnek, H. (1994). Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty‐1. Theoretical and Applied Genetics, 88: 141–146.
  • Zeist, A.R., da Silva, A.A., de Resende, J.T.V., Maluf, W.R., Gabriel, A., Suek, Zanin D.S., Guerra, E. P. (2019). Tomato Breeding for Insect-Pest Resistance. In: Recent Advances in Tomato Breeding and Production. Nyaku, S.T., Danquash, A. (Eds.). IntechOpen, Chapter 3, 1-20.
  • Zhang, H., Li, C., Davis, E.L., Wang, J., Griffin, J.D., Kofsky, J., Song, B. (2016). Genome‐wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG Type 2.5.7 in wild soybean (Glycine soja). Frontiers in Plant Science, 7: 1214.

Determination of Egg Laying Preferences of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on Wild Tomato Species

Year 2022, , 1 - 8, 09.06.2022
https://doi.org/10.29048/makufebed.1021661

Abstract

In this study, the egg-laying preferences of Tuta absoluta (Meyrick) on five different wild tomato species were examined. For this purpose, wild tomato species Solanum arcanum (LA2152), S. habrochaites (LA0094), Solanum lycopersicum (LA0292), Solanum pimpinellifolium (LA0100) and Solanum pennellii (LA0716) were experimented together with the sensitive species selected as control (S. lycopersicum cv Depar). According to the results, among the wild tomato species, S. habrochaites was the least egg laid species and S. lycopersicum was the most egg laid species than the control by the T. absoluta. Egg-laying preferences of T. absoluta to the other wild tomato species are listed from high to low as S. pimpinellifolium, S. pennellii and S. arcanum, respectively. In the assessments using with the Repellent Index determined that, S. habrochaites species showed a repellent effect to females, but there was no difference between male species. The plant preferences of male individuals were also determined, and there were no statistical differences between the preferences of male individuals among all studied wild tomato species.

References

  • Abdul-Ridha, M., Alwan, S.L., Helal, S.M., Aziz, K.A. (2012). Alternative hosts of South American tomato moth Tuta absoluta (Gelechiidae: Lepidoptera) in some tomato farms of Najaf Province. Euphrates Journal of Agriculture Science, 4: 130–137.
  • Baier, J.E., Resende, J.T.V., Faria, M.V., Schwarz, K., Meert, L. (2015). Indirect selection of industrial tomato genotypes that are resistant to spider mites (Tetranychus urticae). Genetics and Molecular Research, 14(1): 244-252.
  • Bitew, M.K. (2018). Significant role of wild genotypes of tomato trichomes for Tuta absoluta resistance. Journal of Plant Genetics and Breeding, 2, 104.
  • Cherif A., Verheggen, F. (2019). A review of Tuta absoluta (Lepidoptera: Gelechiidae) host plants and their impact on management strategies. Biotechnology, Agronomy and Society and Environment, 23(4): 270-278.
  • Chunwongse, J., Chunwongse, C., Black, L., Hanson, P. (2002). Molecular mapping of the Ph‐3 gene for late blight resistance in tomato. The Journal of Horticultural Science & Biotechnology, 77: 281–286.
  • Cuthbertson, A.G.S., Mathers, J.J., Blackburn, L.F., Korycinska, A., Luo, W., Jacobson, R.J., Northing, P. (2013). Population development of Tuta absoluta (Meyrick) (Lepidoptera:Gelechiidae) under simulated UK greenhouse conditions. Insects, 4: 185-197.
  • Desneux, N., Han, P., Mansour, R., Arnó, J., Brévault, T., et al. (2021). Integrated Pest Management of Tuta absoluta: practical implementations across different regions around the world. Journal of Pest Science, 95: 17–39.
  • EPPO (2021). European and Mediterranean Plant Protection Organization (EPPO) Global Database. https://gd.eppo.int/taxon/GNORAB/hosts. (Erişim Tarihi: 15.09.2021)
  • Hajjar, R., Hodgkin, T. (2007). The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156: 1–13.
  • Kayahan, A., Şimşek, B., Karaca, İ., Aktaş, H. (2018). Determination of the responses of different tomato species to Tuta absoluta. Scientific Papers. Series B, Horticulture, 62: 431-435.
  • Lanfermeijer, F.C., Warmink, J., Hille, J. (2005). The products of the broken Tm‐2 and the durable Tm‐22 resistance genes from tomato differ in four amino acids. Journal of Experimental Botany, 56: 2925–2933.
  • Maluf, W.R, Silva, V.F., Cardoso, M.G., Gomes, L.A.A., Gonçalves Neto, A.C., Maciel, G.M., Nízio, D.A.C., (2010). Resistance to the South American tomato pinworm Tuta absoluta in high acylsugar and/or high zingiberene tomato genotypes. Euphytica,176: 113-123.
  • Maxted, N., Magos, B.J., Kell, S. (2013). Resource book for preparation of national conservation plans for crop wild relatives and landraces. Rome, Italy: Food and Agriculture Organization of the United Nations Commission on Genetic Resources for Food and Agriculture.
  • Miller, J.C., Tanskley, S.D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics, 80: 437–448.
  • Mohamed, E.S.I., Mahmoud, M.E.E., Elhaj, M.A.M., Mohamed, S.A., and Ekesi, S. (2015). Host plants record for tomato leaf miner Tuta absoluta (Meyrick) in Sudan. European and Mediterranean Plant Protection Organization Bulletin. 45: 108–111.
  • Öztemiz, S. (2012). Domates güvesi (Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) ve biyolojik mücadele. KSÜ Doğa Bilimleri Dergisi, 15(4): 47-57.
  • Parniske, M., Wulff, B.B.H., Bonnema, G., Thomas, C.M., Jones, D.A., Jones, J.D.G. (1999). Homologues of the Cf‐9 disease resistance gene (Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1. Molecular Plant‐Microbe Interactions, 12: 93–102.
  • Pascual-Villalobos, M.J., Robledo, A. (1998). Screening for anti-insect activity in Mediterranean plants. Industrial Crops and Products, 8(3): 183-194.
  • Prasanna, H.C., Sinha, D.P., Rai, G.K., Krishna, R., Kashyap, S.P., Singh, N.K., Malathi, V.G. (2015). Pyramiding Ty‐2 and Ty‐3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathology, 64: 256–264.
  • Seah, S., Yaghoobi, J., Rossi, M., Gleason, C.A., Williamson, V.M. (2004). The nematode‐resistance gene, Mi‐1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theoretical and Applied Genetics, 108: 1635–1642.
  • Sridhar, V., Sadashiva, A.T., Rao, V.K., Swathi, P., Gadad, H.S. (2019a). Trichome and biochemical basis of resistance against Tuta absoluta in tomato genotypes. Plant Genetic Resources: Characterization and Utilization, 17(3): 301–305.
  • Sridhar, V., Naik, O.N., Nitin, K.S., Asokan, R., Swathi, P., Gadad, H. (2019b). Efficacy of integrated pest management tools evaluated against Tuta absoluta (Meyrick) on tomato in India. Journal of Biological Control, 33: 264–262.
  • Tanksley, S.D., McCouch, S.R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277: 1063–1066.
  • Van Deventer, P. (2009). Leafminer Threatens Tomato Growing in Europe. Agriculture and HortiWorld, Fruit and Vegetable Technolgy, 9(2): 10-12.
  • Zamir, D., Eksteinmichelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Czosnek, H. (1994). Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty‐1. Theoretical and Applied Genetics, 88: 141–146.
  • Zeist, A.R., da Silva, A.A., de Resende, J.T.V., Maluf, W.R., Gabriel, A., Suek, Zanin D.S., Guerra, E. P. (2019). Tomato Breeding for Insect-Pest Resistance. In: Recent Advances in Tomato Breeding and Production. Nyaku, S.T., Danquash, A. (Eds.). IntechOpen, Chapter 3, 1-20.
  • Zhang, H., Li, C., Davis, E.L., Wang, J., Griffin, J.D., Kofsky, J., Song, B. (2016). Genome‐wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG Type 2.5.7 in wild soybean (Glycine soja). Frontiers in Plant Science, 7: 1214.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Paper
Authors

Baran Aslan 0000-0002-9604-0626

Ali Kemal Birgücü 0000-0001-9497-4700

Publication Date June 9, 2022
Acceptance Date January 20, 2022
Published in Issue Year 2022

Cite

APA Aslan, B., & Birgücü, A. K. (2022). Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)’nın Yabani Domates Türlerine Yumurta Koyma Tercihlerinin Belirlenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 1-8. https://doi.org/10.29048/makufebed.1021661