Research Article
BibTex RIS Cite

Topraksız Baş Salata (Lactuca sativa var. capitata) Yetiştiriciliğinde Farklı Tuzluluk Düzeylerinin Bitki Besin Elementlerinin Üzerindeki Etkileri

Year 2022, , 161 - 175, 01.12.2022
https://doi.org/10.29048/makufebed.1093085

Abstract

Araştırmada, topraksız tarım koşullarında gerçekleştirilen baş salata (Lactuca sativa var. capitata) yetiştiriciliğinde katı ortam kültüründe 3 farklı tuzluluk [(Kontrol (EC0), Kontrol+1 dS m-1 (EC1) ve Kontrol+2 dS m-1 (EC2)] düzeyinin verim ve bitki besin elementleri üzerindeki etkileri incelenmiştir. Belirlenen hedefe ulaşmak üzere, PE malzemeden yapılmış kanallarda içerisine perlit ortamı kullanılarak Bombola F1 çeşidi yetiştirilmiştir. Bu amaçla, yetiştiricilik dönemi sonunda bitkilerin bitki besin elementi analizleri gerçekleştirilmiştir. I. üretim döneminde, bitkilere günlük ortalama 0,25-3,76 L bitki-1, II. üretim döneminde ise ortalama 0,33-3,50 L bitki-1 arasında değişen miktarda besin çözeltisi uygulanmıştır. I. üretim döneminde konulardan drene olan ortalama besin çözeltisi miktarlarının 0,15-2,29 litre bitki-1, II. üretim döneminde ise 0,26-2,43 L bitki-1 arasında değişmiştir. Tuzluluk düzeylerinin baş salata yapraklarındaki N, P, K, Mg, Zn ve Mn içerikleri üzerindeki ana etkisi istatistiksel anlamda önemli bir fark yaratmıştır. Tuzluluk düzeylerinin baş salata yapraklarındaki Ca, Fe ve Cu içerikleri üzerindeki etkisi ise önemsiz bulunmuştur (p<0,05). Elde edilen sonuçlara dayanarak, topraksız tarım baş salata yetiştiriciliğinin belli bir konsantrasyona sahip tuzlu sulama sularının kullanılarak gerçekleştirilebileceği yaklaşımında bulunmak mümkündür.

Supporting Institution

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

Ege Üniversitesi Bilimsel Araştırma Projeleri 17/BAMYO/001

Thanks

Araştırmamıza destek sağlayan 17/BAMYO/001 numaralı proje kapsamında Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne teşekkür ederiz.

References

  • Abd-Elmoniem, E.M., Abdrabbo, M.A., Farag, A.A., Medany, M.A. (2006). Hydroponics for food production: Comparison of open and closed systems on yield and consumption of water and nutrient. The 2nd International Conference on Water Resources & Arid Environment, Riyadh, Saudi Arabia: King Saud University, 1-8.
  • Akat, Ö. (2000). Farklı sulama programlarının sera topraksız domates yetiştiriciliğinde açık ve kapalı sistemlerde verim ve su tüketimi üzerine etkileri. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Ağustos, 2000, 55 s.
  • Akat, H., Özzambak M. (2014). The Effects of Ca application on some stress parameters under salinity conditions in the open field growing of limonium sinuatum. Ege Üniversitesi Ziraat Fakültesi Dergisi, 51(1): 59-68.
  • Akat, H., Akat Saraçoğlu Ö. (2017). The efects of organic substances and foliar calcium applications on Limonium sinuatum cultivation in saline conditions. In: Current Trends in Science and Landscape Management. Efe R., Zencirkıran, M., Jan A. Wendt, J.A., Tümsavaş, Z., Unal, H., Bilyana Borisova, B. (eds), Sofia St. Kliment Ohridski University Press Chapter: 25, 285-295.
  • Alberici, A., Quattrini E.., Penati, M., Martinetti, L., Gallina, P.M., Ferrante, A., Schiavi, M. (2008). Effect of the reductıon of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Horticulturae, 801:1167-1176.
  • Anonim, 2022a. https://data.tuik.gov.tr/Bulten/Index?p=Nufus-Projeksiyonlari-2013-2075-15844#:~:text=2050%20y%C4%B1l%C4%B1nda%20D%C3%BCnya%20n%C3%BCfusu%209,yeri%20ise%2024%20olarak%20de%C4%9Fi%C5%9Fecektir. (Erişim tarihi: 20.03.2022)
  • Ayers, A.D., Wadleigh, C.H., Bernstein, L. (1951). Salt tolerance of six varieties of lettuce. Proceedings American Society for Horticultural Science, 57: 237-242.
  • Azevedo-Neto, A.D., Tabosa, J.N. (2000). Salt stress in maize seedlings: II. Distribution of cationic macronutrients and it’s relation with sodium. Revista Brasileira de Engenharia Agricola e Ambiental, 4: 165-171.
  • Bernstein, L., Francois, L.E., Clark, R.A. (1974). Interactive effects of salinity and fertility on yields of grains and vegetables. Agronomy Journal, 66:412–421.
  • Borghesi, E., Carmassi, G., Uguccioni, M.C., Vernieri, P., Malorgio, F. (2013). Effects of calcium and salinity stress on quality of lettuce in soilesss culture. Journal of Plant Nutrition, 36(5):677-690.
  • Breś, W., Kleiber, T., Markiewicz, B., Mieloszyk, E., Mieloch, M. (2022). The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy, 12(2): 244; DOI 10.3390/agronomy12020244.
  • Çamoğlu, G., Demirel, K. (2015). Marulda farklı tuz ve potasyum uygulamalarının verim ve bazı fizyo–morfolojik özelliklere etkileri. Çanakkale On sekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 3(1): 89–97.
  • Çelik, A., Eraslan, F. (2015). Nitrik oksit uygulamasının tuz stresi altında yetiştirilen mısır bitkisinin mineral beslenmesi ve bazıf özellikleri üzerine etkisi. SDU Journal of the Faculty of Agriculture/SDÜ Ziraat Fakültesi Dergisi, 10(1): 55-64.
  • Dahiya, S.S., Singh, M. (1976). Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium pea crop. Plant and Soil, 44: 697–702.
  • Davenport, R.J., Reid, R.J., Smith, F.A. (1997). Sodium calcium interactions in two wheat species differing in salinity tolerance. Plant Physiology, 99: 323–327.
  • Duyar, H., Kılıç, C.C. (2018). Effect of different salinity levels on rocket production in a floating system. In XXX International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII International, 1273: 85-92.
  • Fallovo, C., Rouphael, Y., Rea, E., Battistelli, A., Colla, G. (2009). Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. Journal of The Science of Food and Agriculture, 89: 1682–1689.
  • Feigin, A., Pressman, E., Imas, P. and Miltau, O. (1990). Combined effects of KNO3 and salinity on yield and chemical composition of lettuce and chinese cabbage. Irrigation Science, 12: 223-230.
  • Gümüş, B. (2021). Farklı besin kompozisyonlarının su kültüründe yetiştirilen marul bitkisinin gelişimi ve kimi bitki besin elementi içeriğine etkisi. Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa.
  • Grattan, S.R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78: 127–157.
  • Grusak, M.A. (2002). Enhancing mineral content in plant food products. Journal of the American College of Nutrition, 21: 178–183.
  • Hassan, N.A.K., Drew, J.V., Knudsen, D., Olson, R.A. (1970). Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn. Agronomy Journal, 62: 42–46.
  • Helal, H.M., Mengel, K. (1981). Interaction between light intensity and NaCl salinity and their effects on growth , CO2 assimilation and photosynthate conversion in young broud beans. Plant Physiology, 67: 999-1002.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri. 1-2. A.Ü. Ziraat Fakültesi Yayınları: 468 Yardımcı Ders Kitabı: 161, Ankara.
  • Karakoç, B., Kale, S. (2016). Farklı erirlikteki tuz cinslerine sahip sulama suyu tuz düzeylerinin, marul (Lactuca Sativa) verimi üzerine etkileri. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 11(1): 1-7.
  • Kaya, C., Tuna, A.L. (2005). The role and importance of potassium in the plant grown under salt stress. Int. Potash Institute. Optimizing Crop Nutrition, Potassium in Soil. Plant and Agro Ecosystem. 121: 1-6.
  • Keutgen, A.J, Pawelzik, E. 2008. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chemistry, 107: 1413–1420.
  • Keutgen, A.J., Pawelzik, E. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 65: 170–176.
  • Kılıç, C.C., Kukul, Y.S., Anaç, D. (2008). Performance of purslane (Portulaca oleracea L.) as a salt-removing crop, Agricultural Water Management, 95(7): 854-858.
  • Kılıç, C.C., Anaç, D., Aksoy, U., Anaç, S. (2010). Purslane and natural vegetation as bioremediation tools to cope salinity in Satsuma mandarin orchards. African Journal of Agricultural Research, 5 (23): 3316-3321.
  • Lazof, D., LaÈuchli, A. (1991). The nutritional status of the apical meristem of Lactuca sativa as affected by NaCl salinization: an electron-probe microanalytic study. Planta, 184: 334-342.
  • Maas, E.V., Ogata, G., Garber, M.J. (1972). Influence of salinity on Fe, Mn, Zn uptake by plants. Agronomy Journal, 64: 793–795.
  • Maloupa, E. (2002). Hydroponic systems. In: Hydroponic Production of Vegetables and Ornamentals. Savvas, D. and Passam, H. (eds.), Embryo Publications, Athens, 143-178.
  • Miceli, A., Moncada, A., D’Anna, F. (2003). Effect of salt stress in lettuce cultivation. Acta Horticulturae, 609:371-375.
  • Nassery, H., Ogata, G., Maas, E.V. (1979). Sensitivity of sesame to various salt. Agronomy Journal, 71: 595–597.
  • Neocleous, D., Koukounaras, A., Siomos, A.S., Vasilakakis, M. (2014). Assessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuce. Journal of Food Quality, 37: 1–8.
  • Nicola, S., Hoeberechts, J., Fontana, E. (2002). Rocket (Eruca sativa Mill.) and corn salad (Valerianella olitoria L.): Production and shelf-life of two leafy vegetables grown in a soilless culture system. Acta Horticulturae, 633: 509-516.
  • Niu, X., Bressan, R.A., Hasegawa, P.N., Pardo, J.M. (1995). Ion homeostatis in NaCl stress environments. Plant Physiology,109: 735-742.
  • Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60: 24-349.
  • Pignata, G., Casale, M., Nicola, S. (2017). Water and nutrient supply in horticultural crops grown in soilless culture: resource efficiency in dynamic and intensive systems in Advances: In Research on Fertilization Management of Vegetable Crops. Tei, F., Nicola, S., Benincasa, P. (eds.), Cham Springer, 183–219.
  • Sambo, P., Nicoletto, C., Giro, A., Pii Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., Cesco, S. (2019). Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10:923, 1-17.
  • Savvas, D., Pappa, V.A., Kotsiras, A., Gizas, G. (2005). NaCl accumulation in a cucumber crop grown in a completely closed hydroponic system as influenced by NaCl concentration in irrigation water. European Journal of Horticultural Science, 70:217– 223.
  • Sevgican, A. (2002). Örtüaltı Sebzeciliği (Topraksız Tarım) Cilt – II. Ege Üniversitesi Ziraat Fakültesi Yayınları, İzmir.
  • Taban, S., Katkat, A.V. (2000). Effect of salt stress on growth and mineral elements concentrations in shoot and root of maize plant. Tarım Bilimleri Dergisi, 6 (2): 119–122.
  • Torabi, M. (2014). Physiological and Biochemical Responses of Plants to Salt Stress. The 1st International Conferance on New Ideas in Agriculture. Islmaic Azad University Khorasgan Branch. 26-27 January, Isfahan, Iran.
  • Tuncay, O., Esiyok, D., Yagmur, B., Okur, B. (2011). Yield and quality of garden cress affected by different nitrogen sources and growing period. African Journal of Agricultural Research, 6: 608- 617.
  • Tuteja, N. (2007). Mechanisms of High Salinity Tolerance in Plants, Methods in Enzymology, Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India, 428: 419-438.
  • Ünlükara, A., Cemek, B., Karaman, S., Erşahin, S. (2008). Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36(4): 265-273.
  • Xu, C., Mou, B.( 2015). Evaluation of lettuce genotypes for salinity tolerance. HortScience, 50:1441–1446.
  • Yıldırım, M., Bahar, E., Demirel, K. (2015). Farklı sulama suyu seviyelerinin serada yetiştirilen kıvırcık marulun (Lactuca sativa var. campania) verimi ve gelişimi üzerine etkileri. Çanakkale On sekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 3 (1): 29–34.
  • Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247–73.

Effects of Different Salinity Levels on Plant Nutrient Elements of Head Lettuce Cultivation (Lactuca sativa var. capitata) in Soilless Culture

Year 2022, , 161 - 175, 01.12.2022
https://doi.org/10.29048/makufebed.1093085

Abstract

The research was determined that on yield and plant nutrients of three different salinity levels [(Control (EC0), Control +1 dS m-1 (EC1), Control +2 dS m-1 (EC2)] of head lettuce cultivation (Lactuca sativa var. capitata) with soilless culture. In order to reach the determined target, Bombola F1 variety was grown by using perlite medium in channels made of PE material. With this aim to achieve the specified goal, plant nutrient content were analyzed. In the I. production period, an average of 0,25 L plant-1 and 3.76 L plant-1 plant per day, II. In the production period, an average of 0.33-3.50 L plant-1 nutrient solution was applied. In the I. production period, the average amount of nutrient solution drained from the subjects was between 0.15-2.29 L per plant-1 and II. In the production period, it varied between 0.26-2.43 L plant-1. The main effect of salinity levels on the N, P, K, Mg, Zn and Mn contents of the head lettuce leaves made a statistically significant difference. The effect of salinity levels on the Ca, Fe and Cu contents of the head lettuce leaves was insignificant (p<0.05). It is possible to approach that soilless agriculture head lettuce cultivation can be carried out by using poor quality and salt irrigation waters with a certain concentration.

Project Number

Ege Üniversitesi Bilimsel Araştırma Projeleri 17/BAMYO/001

References

  • Abd-Elmoniem, E.M., Abdrabbo, M.A., Farag, A.A., Medany, M.A. (2006). Hydroponics for food production: Comparison of open and closed systems on yield and consumption of water and nutrient. The 2nd International Conference on Water Resources & Arid Environment, Riyadh, Saudi Arabia: King Saud University, 1-8.
  • Akat, Ö. (2000). Farklı sulama programlarının sera topraksız domates yetiştiriciliğinde açık ve kapalı sistemlerde verim ve su tüketimi üzerine etkileri. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, Ağustos, 2000, 55 s.
  • Akat, H., Özzambak M. (2014). The Effects of Ca application on some stress parameters under salinity conditions in the open field growing of limonium sinuatum. Ege Üniversitesi Ziraat Fakültesi Dergisi, 51(1): 59-68.
  • Akat, H., Akat Saraçoğlu Ö. (2017). The efects of organic substances and foliar calcium applications on Limonium sinuatum cultivation in saline conditions. In: Current Trends in Science and Landscape Management. Efe R., Zencirkıran, M., Jan A. Wendt, J.A., Tümsavaş, Z., Unal, H., Bilyana Borisova, B. (eds), Sofia St. Kliment Ohridski University Press Chapter: 25, 285-295.
  • Alberici, A., Quattrini E.., Penati, M., Martinetti, L., Gallina, P.M., Ferrante, A., Schiavi, M. (2008). Effect of the reductıon of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Horticulturae, 801:1167-1176.
  • Anonim, 2022a. https://data.tuik.gov.tr/Bulten/Index?p=Nufus-Projeksiyonlari-2013-2075-15844#:~:text=2050%20y%C4%B1l%C4%B1nda%20D%C3%BCnya%20n%C3%BCfusu%209,yeri%20ise%2024%20olarak%20de%C4%9Fi%C5%9Fecektir. (Erişim tarihi: 20.03.2022)
  • Ayers, A.D., Wadleigh, C.H., Bernstein, L. (1951). Salt tolerance of six varieties of lettuce. Proceedings American Society for Horticultural Science, 57: 237-242.
  • Azevedo-Neto, A.D., Tabosa, J.N. (2000). Salt stress in maize seedlings: II. Distribution of cationic macronutrients and it’s relation with sodium. Revista Brasileira de Engenharia Agricola e Ambiental, 4: 165-171.
  • Bernstein, L., Francois, L.E., Clark, R.A. (1974). Interactive effects of salinity and fertility on yields of grains and vegetables. Agronomy Journal, 66:412–421.
  • Borghesi, E., Carmassi, G., Uguccioni, M.C., Vernieri, P., Malorgio, F. (2013). Effects of calcium and salinity stress on quality of lettuce in soilesss culture. Journal of Plant Nutrition, 36(5):677-690.
  • Breś, W., Kleiber, T., Markiewicz, B., Mieloszyk, E., Mieloch, M. (2022). The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy, 12(2): 244; DOI 10.3390/agronomy12020244.
  • Çamoğlu, G., Demirel, K. (2015). Marulda farklı tuz ve potasyum uygulamalarının verim ve bazı fizyo–morfolojik özelliklere etkileri. Çanakkale On sekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 3(1): 89–97.
  • Çelik, A., Eraslan, F. (2015). Nitrik oksit uygulamasının tuz stresi altında yetiştirilen mısır bitkisinin mineral beslenmesi ve bazıf özellikleri üzerine etkisi. SDU Journal of the Faculty of Agriculture/SDÜ Ziraat Fakültesi Dergisi, 10(1): 55-64.
  • Dahiya, S.S., Singh, M. (1976). Effect of salinity, alkalinity and iron application on the availability of iron, manganese, phosphorus and sodium pea crop. Plant and Soil, 44: 697–702.
  • Davenport, R.J., Reid, R.J., Smith, F.A. (1997). Sodium calcium interactions in two wheat species differing in salinity tolerance. Plant Physiology, 99: 323–327.
  • Duyar, H., Kılıç, C.C. (2018). Effect of different salinity levels on rocket production in a floating system. In XXX International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII International, 1273: 85-92.
  • Fallovo, C., Rouphael, Y., Rea, E., Battistelli, A., Colla, G. (2009). Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. Journal of The Science of Food and Agriculture, 89: 1682–1689.
  • Feigin, A., Pressman, E., Imas, P. and Miltau, O. (1990). Combined effects of KNO3 and salinity on yield and chemical composition of lettuce and chinese cabbage. Irrigation Science, 12: 223-230.
  • Gümüş, B. (2021). Farklı besin kompozisyonlarının su kültüründe yetiştirilen marul bitkisinin gelişimi ve kimi bitki besin elementi içeriğine etkisi. Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa.
  • Grattan, S.R., Grieve, C.M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78: 127–157.
  • Grusak, M.A. (2002). Enhancing mineral content in plant food products. Journal of the American College of Nutrition, 21: 178–183.
  • Hassan, N.A.K., Drew, J.V., Knudsen, D., Olson, R.A. (1970). Influence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn. Agronomy Journal, 62: 42–46.
  • Helal, H.M., Mengel, K. (1981). Interaction between light intensity and NaCl salinity and their effects on growth , CO2 assimilation and photosynthate conversion in young broud beans. Plant Physiology, 67: 999-1002.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri. 1-2. A.Ü. Ziraat Fakültesi Yayınları: 468 Yardımcı Ders Kitabı: 161, Ankara.
  • Karakoç, B., Kale, S. (2016). Farklı erirlikteki tuz cinslerine sahip sulama suyu tuz düzeylerinin, marul (Lactuca Sativa) verimi üzerine etkileri. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 11(1): 1-7.
  • Kaya, C., Tuna, A.L. (2005). The role and importance of potassium in the plant grown under salt stress. Int. Potash Institute. Optimizing Crop Nutrition, Potassium in Soil. Plant and Agro Ecosystem. 121: 1-6.
  • Keutgen, A.J, Pawelzik, E. 2008. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chemistry, 107: 1413–1420.
  • Keutgen, A.J., Pawelzik, E. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 65: 170–176.
  • Kılıç, C.C., Kukul, Y.S., Anaç, D. (2008). Performance of purslane (Portulaca oleracea L.) as a salt-removing crop, Agricultural Water Management, 95(7): 854-858.
  • Kılıç, C.C., Anaç, D., Aksoy, U., Anaç, S. (2010). Purslane and natural vegetation as bioremediation tools to cope salinity in Satsuma mandarin orchards. African Journal of Agricultural Research, 5 (23): 3316-3321.
  • Lazof, D., LaÈuchli, A. (1991). The nutritional status of the apical meristem of Lactuca sativa as affected by NaCl salinization: an electron-probe microanalytic study. Planta, 184: 334-342.
  • Maas, E.V., Ogata, G., Garber, M.J. (1972). Influence of salinity on Fe, Mn, Zn uptake by plants. Agronomy Journal, 64: 793–795.
  • Maloupa, E. (2002). Hydroponic systems. In: Hydroponic Production of Vegetables and Ornamentals. Savvas, D. and Passam, H. (eds.), Embryo Publications, Athens, 143-178.
  • Miceli, A., Moncada, A., D’Anna, F. (2003). Effect of salt stress in lettuce cultivation. Acta Horticulturae, 609:371-375.
  • Nassery, H., Ogata, G., Maas, E.V. (1979). Sensitivity of sesame to various salt. Agronomy Journal, 71: 595–597.
  • Neocleous, D., Koukounaras, A., Siomos, A.S., Vasilakakis, M. (2014). Assessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuce. Journal of Food Quality, 37: 1–8.
  • Nicola, S., Hoeberechts, J., Fontana, E. (2002). Rocket (Eruca sativa Mill.) and corn salad (Valerianella olitoria L.): Production and shelf-life of two leafy vegetables grown in a soilless culture system. Acta Horticulturae, 633: 509-516.
  • Niu, X., Bressan, R.A., Hasegawa, P.N., Pardo, J.M. (1995). Ion homeostatis in NaCl stress environments. Plant Physiology,109: 735-742.
  • Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60: 24-349.
  • Pignata, G., Casale, M., Nicola, S. (2017). Water and nutrient supply in horticultural crops grown in soilless culture: resource efficiency in dynamic and intensive systems in Advances: In Research on Fertilization Management of Vegetable Crops. Tei, F., Nicola, S., Benincasa, P. (eds.), Cham Springer, 183–219.
  • Sambo, P., Nicoletto, C., Giro, A., Pii Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., Cesco, S. (2019). Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10:923, 1-17.
  • Savvas, D., Pappa, V.A., Kotsiras, A., Gizas, G. (2005). NaCl accumulation in a cucumber crop grown in a completely closed hydroponic system as influenced by NaCl concentration in irrigation water. European Journal of Horticultural Science, 70:217– 223.
  • Sevgican, A. (2002). Örtüaltı Sebzeciliği (Topraksız Tarım) Cilt – II. Ege Üniversitesi Ziraat Fakültesi Yayınları, İzmir.
  • Taban, S., Katkat, A.V. (2000). Effect of salt stress on growth and mineral elements concentrations in shoot and root of maize plant. Tarım Bilimleri Dergisi, 6 (2): 119–122.
  • Torabi, M. (2014). Physiological and Biochemical Responses of Plants to Salt Stress. The 1st International Conferance on New Ideas in Agriculture. Islmaic Azad University Khorasgan Branch. 26-27 January, Isfahan, Iran.
  • Tuncay, O., Esiyok, D., Yagmur, B., Okur, B. (2011). Yield and quality of garden cress affected by different nitrogen sources and growing period. African Journal of Agricultural Research, 6: 608- 617.
  • Tuteja, N. (2007). Mechanisms of High Salinity Tolerance in Plants, Methods in Enzymology, Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India, 428: 419-438.
  • Ünlükara, A., Cemek, B., Karaman, S., Erşahin, S. (2008). Response of lettuce (Lactuca sativa var. crispa) to salinity of irrigation water. New Zealand Journal of Crop and Horticultural Science, 36(4): 265-273.
  • Xu, C., Mou, B.( 2015). Evaluation of lettuce genotypes for salinity tolerance. HortScience, 50:1441–1446.
  • Yıldırım, M., Bahar, E., Demirel, K. (2015). Farklı sulama suyu seviyelerinin serada yetiştirilen kıvırcık marulun (Lactuca sativa var. campania) verimi ve gelişimi üzerine etkileri. Çanakkale On sekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 3 (1): 29–34.
  • Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53: 247–73.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Paper
Authors

Özlem Akat Saraçoğlu 0000-0003-1680-783X

Cenk Ceyhun Kılıç 0000-0002-8929-2761

Project Number Ege Üniversitesi Bilimsel Araştırma Projeleri 17/BAMYO/001
Publication Date December 1, 2022
Acceptance Date May 12, 2022
Published in Issue Year 2022

Cite

APA Akat Saraçoğlu, Ö., & Kılıç, C. C. (2022). Topraksız Baş Salata (Lactuca sativa var. capitata) Yetiştiriciliğinde Farklı Tuzluluk Düzeylerinin Bitki Besin Elementlerinin Üzerindeki Etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 161-175. https://doi.org/10.29048/makufebed.1093085