Research Article
BibTex RIS Cite

Güç Akışı Analizini Öğrenmede PowerWorld Simülatör Kullanımı: Bilgisayar Destekli Bir Görselleştirme Aracı

Year 2022, , 281 - 291, 01.12.2022
https://doi.org/10.29048/makufebed.1153316

Abstract

Yenilenebilir enerji kaynaklarının hızlı gelişimi, dağıtık üretim tesislerinin entegrasyonu ve dijitalleşmedeki ilerlemeler dünya genelindeki güç sistemlerinde karmaşık bir değişime neden olmaktadır. Güç sistemlerinin karmaşıklığı hem lisans hem de lisansüstü öğrencilerinin güç sistemleri ile ilgili çalışmalarını sıkıcı, zor ve zaman alıcı hale getirmektedir. Bununla birlikte, simülasyon araçlarının kullanılması, güç sistemleri çalışmalarıyla ilgili hesaplama işlemlerini büyük ölçüde basitleştirmiştir. Yalnızca güç sisteminin mevcut çalışma koşulları altında çalışmasını değil, aynı zamanda gelecekteki genişlemelerin planını ve tasarımını da değerlendirmek için güç akışı çalışmaları giderek daha gerekli hale gelmektedir. Bu makale, öğrencilerin güç sistemlerindeki karmaşık olayları daha iyi anlamalarına yardımcı olmak için gelişmiş görselleştirme teknikleri kullanan PowerWorld Simülatör ile güç akışı analizinin bir incelemesini sunmaktadır. Bu amaçla, Stevenson’ın 5 baralı güç sisteminin güç akışı analizi Newton-Raphson, Gauss-Seidel ve Hızlı Ayrık metotları ile incelenmiştir. Simülasyon sonuçları hem görsel olarak hem de tablo olarak verilmiştir. Sonuç olarak, PowerWorld Simülatör ile öğrencilerin geleneksel çözümlere ek olarak güç sistemi analiz problemlerini daha iyi anlayacağı görülmüştür.

References

  • Acha, E., Agelidis, V., Anaya-Lara, O., Miller, T.J.E. (2002). Power electronic control in electrical systems. Oxford, UK: Newnes.
  • Afolabi, O.A., Ali, W.H., Cofie, P., Fuller, J., Obiomon, P., Kolawole, E.S. (2015). Analysis of the load flow prob-lem in power system planning studies. Energy and Power Engineering, 7(10): 509–523.
  • Carbajal, C., Gast, A., Fleck, M., Podolsky, S.P., Berry, F., Dinkelaker, J., Patel, K., Jha, A., Grigg, C. (2005). The use of powerworld to conduct load flow analysis and power factor correction on Stevenson’s 5 bus system. Computers in Education Journal, 15: 95–98.
  • Depcik, C., Assanis, D.N. (2005). Graphical user interfaces in an engineering educational environment. Computer Applications in Engineering Education, 13(1): 48–59.
  • Elgerd, O.I. (2012). Electric energy systems theory: An introduction. (2nd ed.). New Delhi: Tata McGraw Hill.
  • Glover, J.D., Sarma, M.S., Overbye, T. (2012). Power sys-tem analysis & design, 5th ed., Stamford, USA: Cen-gage Learning.
  • Grigsby, L.L. (2006). Electric power engineering hand-book. London: CRC Press LLC.
  • Honrubia‐Escribano, A., Villena‐Ruiz, R., Artigao, E., Gómez‐Lázaro, E., Morales, A. (2021). Advanced teaching method for learning power system operation based on load flow simulations. Computer Applications in Engineering Education, 29(6): 1743–1756.
  • Iwamoto, S., Tamura, Y. (1978). A fast load flow method retaining nonlinearity. IEEE Transactions on Power Ap-paratus and Systems, 5: 1586–1599.
  • Kothari, I.J., Nagrath, D.P. (2007). Modern power system analysis, 3rd ed., New Delhi: Tata McGraw Hill.
  • Lim, J.U. (2013). An enhanced approach for the power system course using a computer-based visualization tool for steady-state power system simulation. 2013 ASEE International Forum, 11–21.
  • Moradia, M.H., Foroutana, V.B., Abedinib, M. (2017). Pow-er flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach. Renewable and Sustainable Energy Reviews, 69: 248–262.
  • Nasiruzzaman, A.B.M. (2010). A student friendly toolbox for power system analysis using MATLAB. Matlab-Modelling, Programming and Simulations, 67–86.
  • Oliveira, T.L., Guimarães, G.C., Silva, L.R., Rezende, J.O. (2019). Power system education and research applica-tions using free and open-source, graphical and multi-platform PSP-UFU software. The International Journal of Electrical Engineering & Education, 1–25.
  • Pietryga, F. (2006). Animation of a power system using PowerWorld Simulator. 2006 Annual Conference & Ex-position, 211–216).
  • PowerWorld Corporation (2022). PowerWorld Simulator. https://www.powerworld.com/ (Erişim Tarihi: 22.07.2022)
  • Rajicic, D., Bose, A. (1988). A modification to the fast de-coupled power flow for networks with high R/X ratios. IEEE Transactions on Power Systems, 3(2): 743–746.
  • Saadat, H. (2010). Power system analysis, 3rd ed., Alexan-dria: PSA Publishing LLC, Chapter 6.
  • Schneider, K.P., Mather, B.A., Pal, B.C., Ten, C.-W., Shirek, G.J., Zhu, H., Fuller, J.C., Pereira J.L.R., Ochoa, L.F., de Araujo, L.R., Dugan, R.C., Matthias, S., Paudyal, S., McDermott, T.E., Kersting, W. (2017). Analytic consid-erations and design basis for the IEEE distribution test feeders. IEEE Transactions on Power Systems, 33(3): 3181–3188.
  • Shaikh, F. A., Zaheeruddin, Z., Asghar, M.J., Singh, G. (2007). Soft computing techniques and role of Power-World® simulator for forecasting and mitigation of power system blackout. International Conference on Computational Intelligence and Multimedia Applica-tions (ICCIMA 2007), 1: 341-346.
  • Sharma, R., Dhillon, J. (2021). PyPSA: Open source Py-thon tool for load flow study. Journal of Physics: Con-ference Series, 1854(1):012-036.
  • Stevenson, W.D. (1982). Elements of power system analy-sis, 4th ed., New York: McGraw-Hill.
  • Stott, B., Alsac, O. (1974). Fast decoupled load flow. IEEE Transactions on Power Apparatus and Systems, 3: 859–869.
  • Tamali, M., Allali, M., Bouzidi, B., Toumi, T. (2013). Electri-cal network’s modeling & simulation tools: The state of the art. Journal of Electrical and Control Engineering, 3(5): 1–12.
  • Thayer, B. L., Mao, Z., Liu, Y., Davis, K., Overbye, T. (2020). Easy simauto (esa): A python package that simplifies interacting with powerworld simulator. Journal of Open Source Software, 5(50): 2289.
  • Tinney, W.F., Hart, C.E. (1967). Power flow solution by Newton's method. IEEE Transactions on Power Appa-ratus and Systems, 11: 1449–1460.
  • Zhang, W.H., Jiang, H.Y. (2015). Computer-assisted interactive learning for teaching power flow problem. Journal of Information Technology and Application in Education, 4: 30–33.

Use of PowerWorld Simulator in Learning Power Flow Analysis: A Computer-Aided Visualization Tool

Year 2022, , 281 - 291, 01.12.2022
https://doi.org/10.29048/makufebed.1153316

Abstract

The rapid development of renewable energy sources, the integration of distributed generation facilities, and advances in digitalization are causing a complex transformation in power systems around the world. The complexity of power systems makes power systems studies tedious, difficult and time-consuming for both undergraduate and graduate students. However, the use of simulation tools has greatly simplified the computational operations associated with power systems studies. Power flow studies are becoming increasingly necessary to evaluate not only the operation of the power system under current operating conditions but also the plan and design of future expansions. This paper provides a review of power flow analysis with PowerWorld Simulator, which uses advanced visualization techniques to assist students in better understanding complex phenomena in power systems. For this purpose, power flow analysis of Stevenson’s 5 bus power system was investigated by Newton-Raphson, Gauss-Seidel and Fast Decoupled methods. The simulation results are given both visually and as a table. As a result, it has been seen that with PowerWorld Simulator, students will better understand power system analysis problems in addition to traditional solutions.

References

  • Acha, E., Agelidis, V., Anaya-Lara, O., Miller, T.J.E. (2002). Power electronic control in electrical systems. Oxford, UK: Newnes.
  • Afolabi, O.A., Ali, W.H., Cofie, P., Fuller, J., Obiomon, P., Kolawole, E.S. (2015). Analysis of the load flow prob-lem in power system planning studies. Energy and Power Engineering, 7(10): 509–523.
  • Carbajal, C., Gast, A., Fleck, M., Podolsky, S.P., Berry, F., Dinkelaker, J., Patel, K., Jha, A., Grigg, C. (2005). The use of powerworld to conduct load flow analysis and power factor correction on Stevenson’s 5 bus system. Computers in Education Journal, 15: 95–98.
  • Depcik, C., Assanis, D.N. (2005). Graphical user interfaces in an engineering educational environment. Computer Applications in Engineering Education, 13(1): 48–59.
  • Elgerd, O.I. (2012). Electric energy systems theory: An introduction. (2nd ed.). New Delhi: Tata McGraw Hill.
  • Glover, J.D., Sarma, M.S., Overbye, T. (2012). Power sys-tem analysis & design, 5th ed., Stamford, USA: Cen-gage Learning.
  • Grigsby, L.L. (2006). Electric power engineering hand-book. London: CRC Press LLC.
  • Honrubia‐Escribano, A., Villena‐Ruiz, R., Artigao, E., Gómez‐Lázaro, E., Morales, A. (2021). Advanced teaching method for learning power system operation based on load flow simulations. Computer Applications in Engineering Education, 29(6): 1743–1756.
  • Iwamoto, S., Tamura, Y. (1978). A fast load flow method retaining nonlinearity. IEEE Transactions on Power Ap-paratus and Systems, 5: 1586–1599.
  • Kothari, I.J., Nagrath, D.P. (2007). Modern power system analysis, 3rd ed., New Delhi: Tata McGraw Hill.
  • Lim, J.U. (2013). An enhanced approach for the power system course using a computer-based visualization tool for steady-state power system simulation. 2013 ASEE International Forum, 11–21.
  • Moradia, M.H., Foroutana, V.B., Abedinib, M. (2017). Pow-er flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach. Renewable and Sustainable Energy Reviews, 69: 248–262.
  • Nasiruzzaman, A.B.M. (2010). A student friendly toolbox for power system analysis using MATLAB. Matlab-Modelling, Programming and Simulations, 67–86.
  • Oliveira, T.L., Guimarães, G.C., Silva, L.R., Rezende, J.O. (2019). Power system education and research applica-tions using free and open-source, graphical and multi-platform PSP-UFU software. The International Journal of Electrical Engineering & Education, 1–25.
  • Pietryga, F. (2006). Animation of a power system using PowerWorld Simulator. 2006 Annual Conference & Ex-position, 211–216).
  • PowerWorld Corporation (2022). PowerWorld Simulator. https://www.powerworld.com/ (Erişim Tarihi: 22.07.2022)
  • Rajicic, D., Bose, A. (1988). A modification to the fast de-coupled power flow for networks with high R/X ratios. IEEE Transactions on Power Systems, 3(2): 743–746.
  • Saadat, H. (2010). Power system analysis, 3rd ed., Alexan-dria: PSA Publishing LLC, Chapter 6.
  • Schneider, K.P., Mather, B.A., Pal, B.C., Ten, C.-W., Shirek, G.J., Zhu, H., Fuller, J.C., Pereira J.L.R., Ochoa, L.F., de Araujo, L.R., Dugan, R.C., Matthias, S., Paudyal, S., McDermott, T.E., Kersting, W. (2017). Analytic consid-erations and design basis for the IEEE distribution test feeders. IEEE Transactions on Power Systems, 33(3): 3181–3188.
  • Shaikh, F. A., Zaheeruddin, Z., Asghar, M.J., Singh, G. (2007). Soft computing techniques and role of Power-World® simulator for forecasting and mitigation of power system blackout. International Conference on Computational Intelligence and Multimedia Applica-tions (ICCIMA 2007), 1: 341-346.
  • Sharma, R., Dhillon, J. (2021). PyPSA: Open source Py-thon tool for load flow study. Journal of Physics: Con-ference Series, 1854(1):012-036.
  • Stevenson, W.D. (1982). Elements of power system analy-sis, 4th ed., New York: McGraw-Hill.
  • Stott, B., Alsac, O. (1974). Fast decoupled load flow. IEEE Transactions on Power Apparatus and Systems, 3: 859–869.
  • Tamali, M., Allali, M., Bouzidi, B., Toumi, T. (2013). Electri-cal network’s modeling & simulation tools: The state of the art. Journal of Electrical and Control Engineering, 3(5): 1–12.
  • Thayer, B. L., Mao, Z., Liu, Y., Davis, K., Overbye, T. (2020). Easy simauto (esa): A python package that simplifies interacting with powerworld simulator. Journal of Open Source Software, 5(50): 2289.
  • Tinney, W.F., Hart, C.E. (1967). Power flow solution by Newton's method. IEEE Transactions on Power Appa-ratus and Systems, 11: 1449–1460.
  • Zhang, W.H., Jiang, H.Y. (2015). Computer-assisted interactive learning for teaching power flow problem. Journal of Information Technology and Application in Education, 4: 30–33.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Paper
Authors

Ahmet Çifci 0000-0001-7679-9945

Publication Date December 1, 2022
Acceptance Date September 29, 2022
Published in Issue Year 2022

Cite

APA Çifci, A. (2022). Güç Akışı Analizini Öğrenmede PowerWorld Simülatör Kullanımı: Bilgisayar Destekli Bir Görselleştirme Aracı. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 281-291. https://doi.org/10.29048/makufebed.1153316