Araştırma Makalesi
BibTex RIS Kaynak Göster

Buji İle Ateşlemeli Bir Motorda Benzoiltiyoüre Türevi Yakıt Katkısının Motor Performansı ve Egzoz Emisyonlarına Etkisinin İncelenmesi

Yıl 2023, , 355 - 364, 31.12.2023
https://doi.org/10.29048/makufebed.1397481

Öz

Yakıt katkı maddeleri, motor performansını iyileştirmek ve ayrıca motorda yanma sonrasında ortaya çıkan kirletici emisyonları azaltmak için kullanılmaktadır. Bu çalışmada, ilk defa tek silindirli buji ateşlemeli bir motorda, N-(2-amino-5-bromo-1,2-dihydropyridine-1-carbonothioyl)furan-2-carboxamide (C11H10BrN3O2S) kimyasal bileşimine sahip benzoiltiyoüre türevi yakıt katkı maddesinin motor torku, efektif güç, özgül yakıt tüketimi (ÖYT), ısıl verim, CO, CO2 ve HC emisyonlarındaki değişimlere etkisi araştırılmıştr. Bu amaçla, test motoru tam açık gaz kelebeğinde, 2400, 2800, 3200, 3600 ve 4000 d/d motor devirlerinde çalıştırılmış ve benzine katkı maddesi eklendikçe motor gücü ve torkun azaldığı. ÖYT 2800 d/d’da saf benzine kıyasla test yakıtı-1, test yakıtı-2, ve test yakıtı-3 için sırasıyla yaklaşık %5.52, %9.60 ve %14.20 oranında azalmıştır. Aynı devirde test yakıtı-2 için ısıl verimin benzine göre yaklaşık %16.45 oranında arttığı görülmüştür.Yakıt katkısı ilave edildikçe CO emisyonlarında dikkat çekici bir azalmanın olduğu görülmüştür. Ancak test yakıtı-1 ve test yakıtı-2 ile HC emisyonlarının benzine göre azaldığı test yakıtı-3 ile arttığı görülmüştür. Sonuçta benzoiltiyoüre türevinin (N-(5-bromo-pyridin-2-yl)carbonothioyl)furan-2-carboxamide) buji ile ateşlemeli bir motorda yakıt katkı maddesi olarak kullanılabileceği görülmüştür.

Teşekkür

Yazar; Burdur Mehmet Akif Ersoy Üniversitesi, Fen-Edebiyat Fakültesi, Kimya Bölümü Öğretim Üyesi Prof. Dr. Fatih Mehmet Emen’e çalışmaya vermiş olduğu katkılarından dolayı teşekkür eder.

Kaynakça

  • Abdelhamid, A., Elsaghiera, A., Aref, S., Gad, M., Ahmed, N., & Abdel-Raheem, S. H. A. A. (2021). Preparation and bio-logical activity evaluation of some benzoylthiourea and benzoylurea compounds. Current Chemistry Let-ters, 10(4), 371-376.
  • Abu-Melha, K. S., & El-Metwally, N. M. (2008). Spectral and thermal studies for some transition metal complexes of bis (benzylthiocarbohydrazone) focusing on EPR study for Cu (II) and VO2+. Spectrochimica Acta Part A: Mole-cular and Biomolecular Spectroscopy, 70(2), 277-283.
  • Al-Hazmi, G. A., El-Metwally, N. M., El-Gammal, O. A., & El-Asmy, A. A. (2008). Synthesis, spectral characterization and eukaryotic DNA degradation of thiosemicarbazones and their platinum (IV) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(1), 56-61.
  • El-Ayaan, U., El-Metwally, N. M., Youssef, M. M., & El Bialy, S. A. (2007). Perchlorate mixed–ligand copper (II) comp-lexes of β-diketone and ethylene diamine derivatives: thermal, spectroscopic and biochemical studies. Spect-rochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(5), 1278-1286.
  • El-Metwally, N. M., Gabr, I. M., El-Asmy, A. A., & Abou-Hussen, A. A. (2006). Spectral, magnetic, electrical and thermal studies on malonyl bis (thiosemicarbazide) comp-lexes. Transition Metal Chemistry, 31, 71-78.
  • Gorski K., Smigins R., Longwic R., (2020). Research on Physico-Chemical Properties of Diethyl Ether/Linseed Oil Blends for the Use as Fuel in Diesel Engines. Ener-gies.13:6564.
  • Graser, M., Kopacka, H., Wurst, K., Müller, T., & Bildstein, B. (2013). Structurally diverse pyridyl or quinolyl enola-to/enamido metal complexes of Li, Zr, Fe, Co, Ni, Cu and Zn. Inorganica Chimica Acta, 401, 38-49.
  • Gumus, I., Solmaz, U., Binzet, G., Keskin, E., Arslan, B., & Arslan, H. (2019). Supramolecular self-assembly of new thiourea derivatives directed by intermolecular hydrogen bonds and weak interactions: crystal structures and Hirsh-feld surface analysis. Research on Chemical Intermedia-tes, 45, 169-198.
  • Günaydin, S., Uyumaz, A., Kocakulak, T., Coşman, S., Sol-maz, H., & Aksoy, F. (2024). Evaluation of dibutyl malea-te/diesel blends on combustion, performance and emissi-ons in a DI diesel engine. Applied Thermal Enginee-ring, 236, 121520.
  • Heywood, J.B. Internal Combustion Engine Fundamentals, McGraw-Hill Publishing Company; New York, 1988. Holman, J.P., Experimental Methods for Engineers, McGraw Hill eight edition, Newyork, 2001.
  • Kalem, E., & Erbil, A. Ğ. A. R. (2022). Tiyoürelerin tüberküloz tedavisinde kullanımı. Anadolu Bil Meslek Yüksekokulu Dergisi, 16(64), 239-262.
  • Karthick, M., Logesh, K., Baskar, S., & Sharma, A. (2022). Performance and emission characteristics of single-cylinder diesel engine fueled with biodiesel derived from cashew nut shell. In Advancement in Materials, Manufac-turing and Energy Engineering, Vol. II: Select Procee-dings of ICAMME 2021 (pp. 521-529). Singapore: Sprin-ger Nature Singapore.
  • Keskin, E., Solmaz, U., Gumus, I., & Arslan, H. (2022). Di-and tetra-nuclear oxorhenium (V) complexes of ben-zoylthiourea derivative ligands: Synthesis, structural cha-racterization, and catalytic applications. Polyhedron, 219, 115786.
  • Keskin, E., Solmaz, U., Binzet, G., Gumus, I., & Arslan, H. (2018). Synthesis, characterization and crystal structure of platinum (II) complexes with thiourea derivative li-gands. European Journal of Chemistry, 9(4), 360-368.
  • Keskin, A., Ocakoglu, K., Resitoglu, I. A., Avsar, G., Emen, F. M., & Buldum, B. (2015). Using Pd (II) and Ni (II) complexes with N, N-dimethyl-N′-2-chlorobenzoylthiourea ligand as fuel additives in diesel engine. Fuel, 162, 202-206.
  • Keskin, A., Yaşar, A., Yıldızhan, Ş., Uludamar, E., Emen, F. M., & Külcü, N. (2018). Evaluation of diesel fuel-biodiesel blends with palladium and acetylferrocene based additi-ves in a diesel engine. Fuel, 216, 349-355.
  • Kumar, C., Rana, K. B., Tripathi, B., & Nayyar, A. (2018). Properties and effects of organic additives on performan-ce and emission characteristics of diesel engine: a comp-rehensive review. Environmental science and pollution research, 25, 22475-22498.
  • Kumar D.S., Murugesan S., (2023). Experimental Investiga-tion on Impact of Diethyl Ether Additives with Cashew Nut Shell Liquid Biodiesel Blends on Performance Characte-ristics of Engine Operating at Opti-mum Conditions. Emission Control Science and Technology.; 9:66-75.
  • Kurt, G. (2008) yeni şelatlaştırıcı reçinelerin sentezi, uygulama alanlarının araştırılması, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Konya.
  • Kurt, G. (2019). Synthesis of new poly-benzoylthiourea and thermal and surface properties. Journal of Polymer Re-search, 26(9), 232.
  • Mofat, R.J. (1985). Using uncertainty analysis in the planning of an experi-ment. J Fluids Eng. 107(2), 173-178.
  • Mukiza, J., Braband, H., Bolliger, R., Blacque, O., Alberto, R., & Nkurunziza, J. B. (2021). A novel benzoylthiourea deri-vative with a triazinethione moiety: Synthesis and coordi-nation with the organometallic fac-[Re (CO) 3]+ co-re. Inorganica Chimica Acta, 516, 120116.
  • Refat, M. S., & El-Metwaly, N. M. (2012). Spectral, thermal and biological studies of Mn (II) and Cu (II) complexes with two thiosemicarbazide derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, 336-346.
  • Saeed, A., Flörke, U., & Erben, M. F. (2014). A review on the chemistry, coordination, structure and biological proper-ties of 1-(acyl/aroyl)-3-(substituted) thioureas. Journal of Sulfur Chemistry, 35(3), 318-355.
  • Schmitt, B., Gerber, T. I. A., Hosten, E., & Betz, R. (2012). Monomeric/dimeric complexes of fac-[Re (CO) 3]+ with benzoylthiourea derivatives. Inorganic Chemistry Com-munications, 24, 136-139.
  • Siddartha, G. N. V., Ramakrishna, C. S., Kujur, P. K., Rao, Y. A., Dalela, N., Yadav, A. S., & Sharma, A. (2022). Effect of fuel additives on internal combustion engine perfor-mance and emissions. Materials Today: Proceedings, 63, A9-A14.
  • Sievers, H., & Schuster, M. (2014). Long-term monitoring of palladium and platinum contents in road dust of the city of Munich, Germany. In Platinum metals in the environ-ment (pp. 187-198). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Sharma, A., & Murugan, S. (2022). Combustion analysis of a diesel engine run on non-conventional fuel at different nozzle injection pressure. In Innovations in Energy, Power and Thermal Engineering: Select Proceedings of ICITFES 2020 (pp. 109-118). Springer Singapore.
  • Solmaz, U., Ince, S., Yilmaz, M. K., & Arslan, H. (2022). Conversion of monodentate benzoylthiourea palladium (II) complex to bidentate coordination mode: Synthesis, crys-tal structure and catalytic activity in the Suzuki-Miyaura cross-coupling reaction. Journal of Organometallic Che-mistry, 973, 122374.
  • URL-1 (2023). Tüp-raş,2023.https://www.tupras.com.tr/uploads/Urunler_en/UNLEADED_MOTOR_GASOLINE_95_RON-243.pdf, (Erişim Tarihi 20.10.2023).
  • Yang, W., Liu, H., Li, M., Wang, F., Zhou, W., & Fan, J. (2012). Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with co-balt. Journal of inorganic biochemistry, 116, 97-105.
  • Yeşilkaynak, T., Özkömeç, F. N., Çeşme, M., Demirdöğen, R. E., Kutlu, E., Kutlu, H. M., & Emen, F. M. (2022).
  • Synthesis of new thiourea derivatives and metal comp-lexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. Journal of Molecular Structure, 1269, 133758.
  • Uyumaz, A. (2023). Experimental Research With Diethyl Ether on Engine Performance and Emissions in a Spark Ignition Engine. International Journal of Automotive Sci-ence And Technology, 7(3), 167-174.
  • Zahra, U., Saeed, A., Fattah, T. A., Flörke, U., & Erben, M. F. (2022). Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review. RSC advances, 12(20), 12710-12745.

Investigation of the Effect of Benzoylthiourea Derivative Fuel Additive N-(5-bromo-pyridin-2-yl)carbonothioyl)furan-2-carboxamide on Engine Performance and Exhaust Emissions in a Spark Ignition Engine

Yıl 2023, , 355 - 364, 31.12.2023
https://doi.org/10.29048/makufebed.1397481

Öz

Yakıt katkı maddeleri, motor performansını iyileştirmek ve ayrıca motorda yanma sonrasında ortaya çıkan kirletici emisyonları azaltmak için kullanılmaktadır. Bu çalışmada, ilk defa tek silindirli buji ateşlemeli bir motorda, N-(2-amino-5-bromo-1,2-dihydropyridine-1-carbonothioyl)furan-2-carboxamide (C11H10BrN3O2S) kimyasal bileşimine sahip benzoiltiyoüre türevi yakıt katkı maddesinin motor torku, efektif güç, özgül yakıt tüketimi (ÖYT), ısıl verim, CO, CO2 ve HC emisyonlarındaki değişimlere etkisi araştırılmıştr. Bu amaçla, test motoru tam açık gaz kelebeğinde, 2400, 2800, 3200, 3600 ve 4000 d/d motor devirlerinde çalıştırılmış ve benzine katkı maddesi eklendikçe motor gücü ve torkun azaldığı. ÖYT 2800 d/d’da saf benzine kıyasla test yakıtı-1, test yakıtı-2, ve test yakıtı-3 için sırasıyla yaklaşık %5.52, %9.60 ve %14.20 oranında azalmıştır. Aynı devirde test yakıtı-2 için ısıl verimin benzine göre yaklaşık %16.45 oranında arttığı görülmüştür.Yakıt katkısı ilave edildikçe CO emisyonlarında dikkat çekici bir azalmanın olduğu görülmüştür. Ancak test yakıtı-1 ve test yakıtı-2 ile HC emisyonlarının benzine göre azaldığı test yakıtı-3 ile arttığı görülmüştür. Sonuçta benzoiltiyoüre türevinin (N-(5-bromo-pyridin-2-yl)carbonothioyl)furan-2-carboxamide) buji ile ateşlemeli bir motorda yakıt katkı maddesi olarak kullanılabileceği görülmüştür.

Kaynakça

  • Abdelhamid, A., Elsaghiera, A., Aref, S., Gad, M., Ahmed, N., & Abdel-Raheem, S. H. A. A. (2021). Preparation and bio-logical activity evaluation of some benzoylthiourea and benzoylurea compounds. Current Chemistry Let-ters, 10(4), 371-376.
  • Abu-Melha, K. S., & El-Metwally, N. M. (2008). Spectral and thermal studies for some transition metal complexes of bis (benzylthiocarbohydrazone) focusing on EPR study for Cu (II) and VO2+. Spectrochimica Acta Part A: Mole-cular and Biomolecular Spectroscopy, 70(2), 277-283.
  • Al-Hazmi, G. A., El-Metwally, N. M., El-Gammal, O. A., & El-Asmy, A. A. (2008). Synthesis, spectral characterization and eukaryotic DNA degradation of thiosemicarbazones and their platinum (IV) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(1), 56-61.
  • El-Ayaan, U., El-Metwally, N. M., Youssef, M. M., & El Bialy, S. A. (2007). Perchlorate mixed–ligand copper (II) comp-lexes of β-diketone and ethylene diamine derivatives: thermal, spectroscopic and biochemical studies. Spect-rochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 68(5), 1278-1286.
  • El-Metwally, N. M., Gabr, I. M., El-Asmy, A. A., & Abou-Hussen, A. A. (2006). Spectral, magnetic, electrical and thermal studies on malonyl bis (thiosemicarbazide) comp-lexes. Transition Metal Chemistry, 31, 71-78.
  • Gorski K., Smigins R., Longwic R., (2020). Research on Physico-Chemical Properties of Diethyl Ether/Linseed Oil Blends for the Use as Fuel in Diesel Engines. Ener-gies.13:6564.
  • Graser, M., Kopacka, H., Wurst, K., Müller, T., & Bildstein, B. (2013). Structurally diverse pyridyl or quinolyl enola-to/enamido metal complexes of Li, Zr, Fe, Co, Ni, Cu and Zn. Inorganica Chimica Acta, 401, 38-49.
  • Gumus, I., Solmaz, U., Binzet, G., Keskin, E., Arslan, B., & Arslan, H. (2019). Supramolecular self-assembly of new thiourea derivatives directed by intermolecular hydrogen bonds and weak interactions: crystal structures and Hirsh-feld surface analysis. Research on Chemical Intermedia-tes, 45, 169-198.
  • Günaydin, S., Uyumaz, A., Kocakulak, T., Coşman, S., Sol-maz, H., & Aksoy, F. (2024). Evaluation of dibutyl malea-te/diesel blends on combustion, performance and emissi-ons in a DI diesel engine. Applied Thermal Enginee-ring, 236, 121520.
  • Heywood, J.B. Internal Combustion Engine Fundamentals, McGraw-Hill Publishing Company; New York, 1988. Holman, J.P., Experimental Methods for Engineers, McGraw Hill eight edition, Newyork, 2001.
  • Kalem, E., & Erbil, A. Ğ. A. R. (2022). Tiyoürelerin tüberküloz tedavisinde kullanımı. Anadolu Bil Meslek Yüksekokulu Dergisi, 16(64), 239-262.
  • Karthick, M., Logesh, K., Baskar, S., & Sharma, A. (2022). Performance and emission characteristics of single-cylinder diesel engine fueled with biodiesel derived from cashew nut shell. In Advancement in Materials, Manufac-turing and Energy Engineering, Vol. II: Select Procee-dings of ICAMME 2021 (pp. 521-529). Singapore: Sprin-ger Nature Singapore.
  • Keskin, E., Solmaz, U., Gumus, I., & Arslan, H. (2022). Di-and tetra-nuclear oxorhenium (V) complexes of ben-zoylthiourea derivative ligands: Synthesis, structural cha-racterization, and catalytic applications. Polyhedron, 219, 115786.
  • Keskin, E., Solmaz, U., Binzet, G., Gumus, I., & Arslan, H. (2018). Synthesis, characterization and crystal structure of platinum (II) complexes with thiourea derivative li-gands. European Journal of Chemistry, 9(4), 360-368.
  • Keskin, A., Ocakoglu, K., Resitoglu, I. A., Avsar, G., Emen, F. M., & Buldum, B. (2015). Using Pd (II) and Ni (II) complexes with N, N-dimethyl-N′-2-chlorobenzoylthiourea ligand as fuel additives in diesel engine. Fuel, 162, 202-206.
  • Keskin, A., Yaşar, A., Yıldızhan, Ş., Uludamar, E., Emen, F. M., & Külcü, N. (2018). Evaluation of diesel fuel-biodiesel blends with palladium and acetylferrocene based additi-ves in a diesel engine. Fuel, 216, 349-355.
  • Kumar, C., Rana, K. B., Tripathi, B., & Nayyar, A. (2018). Properties and effects of organic additives on performan-ce and emission characteristics of diesel engine: a comp-rehensive review. Environmental science and pollution research, 25, 22475-22498.
  • Kumar D.S., Murugesan S., (2023). Experimental Investiga-tion on Impact of Diethyl Ether Additives with Cashew Nut Shell Liquid Biodiesel Blends on Performance Characte-ristics of Engine Operating at Opti-mum Conditions. Emission Control Science and Technology.; 9:66-75.
  • Kurt, G. (2008) yeni şelatlaştırıcı reçinelerin sentezi, uygulama alanlarının araştırılması, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Konya.
  • Kurt, G. (2019). Synthesis of new poly-benzoylthiourea and thermal and surface properties. Journal of Polymer Re-search, 26(9), 232.
  • Mofat, R.J. (1985). Using uncertainty analysis in the planning of an experi-ment. J Fluids Eng. 107(2), 173-178.
  • Mukiza, J., Braband, H., Bolliger, R., Blacque, O., Alberto, R., & Nkurunziza, J. B. (2021). A novel benzoylthiourea deri-vative with a triazinethione moiety: Synthesis and coordi-nation with the organometallic fac-[Re (CO) 3]+ co-re. Inorganica Chimica Acta, 516, 120116.
  • Refat, M. S., & El-Metwaly, N. M. (2012). Spectral, thermal and biological studies of Mn (II) and Cu (II) complexes with two thiosemicarbazide derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, 336-346.
  • Saeed, A., Flörke, U., & Erben, M. F. (2014). A review on the chemistry, coordination, structure and biological proper-ties of 1-(acyl/aroyl)-3-(substituted) thioureas. Journal of Sulfur Chemistry, 35(3), 318-355.
  • Schmitt, B., Gerber, T. I. A., Hosten, E., & Betz, R. (2012). Monomeric/dimeric complexes of fac-[Re (CO) 3]+ with benzoylthiourea derivatives. Inorganic Chemistry Com-munications, 24, 136-139.
  • Siddartha, G. N. V., Ramakrishna, C. S., Kujur, P. K., Rao, Y. A., Dalela, N., Yadav, A. S., & Sharma, A. (2022). Effect of fuel additives on internal combustion engine perfor-mance and emissions. Materials Today: Proceedings, 63, A9-A14.
  • Sievers, H., & Schuster, M. (2014). Long-term monitoring of palladium and platinum contents in road dust of the city of Munich, Germany. In Platinum metals in the environ-ment (pp. 187-198). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Sharma, A., & Murugan, S. (2022). Combustion analysis of a diesel engine run on non-conventional fuel at different nozzle injection pressure. In Innovations in Energy, Power and Thermal Engineering: Select Proceedings of ICITFES 2020 (pp. 109-118). Springer Singapore.
  • Solmaz, U., Ince, S., Yilmaz, M. K., & Arslan, H. (2022). Conversion of monodentate benzoylthiourea palladium (II) complex to bidentate coordination mode: Synthesis, crys-tal structure and catalytic activity in the Suzuki-Miyaura cross-coupling reaction. Journal of Organometallic Che-mistry, 973, 122374.
  • URL-1 (2023). Tüp-raş,2023.https://www.tupras.com.tr/uploads/Urunler_en/UNLEADED_MOTOR_GASOLINE_95_RON-243.pdf, (Erişim Tarihi 20.10.2023).
  • Yang, W., Liu, H., Li, M., Wang, F., Zhou, W., & Fan, J. (2012). Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with co-balt. Journal of inorganic biochemistry, 116, 97-105.
  • Yeşilkaynak, T., Özkömeç, F. N., Çeşme, M., Demirdöğen, R. E., Kutlu, E., Kutlu, H. M., & Emen, F. M. (2022).
  • Synthesis of new thiourea derivatives and metal comp-lexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. Journal of Molecular Structure, 1269, 133758.
  • Uyumaz, A. (2023). Experimental Research With Diethyl Ether on Engine Performance and Emissions in a Spark Ignition Engine. International Journal of Automotive Sci-ence And Technology, 7(3), 167-174.
  • Zahra, U., Saeed, A., Fattah, T. A., Flörke, U., & Erben, M. F. (2022). Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review. RSC advances, 12(20), 12710-12745.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Sertaç Coşman 0009-0005-9360-216X

Erken Görünüm Tarihi 22 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 28 Kasım 2023
Kabul Tarihi 16 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Coşman, S. (2023). Buji İle Ateşlemeli Bir Motorda Benzoiltiyoüre Türevi Yakıt Katkısının Motor Performansı ve Egzoz Emisyonlarına Etkisinin İncelenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 355-364. https://doi.org/10.29048/makufebed.1397481