Research Article
BibTex RIS Cite

Bağımsız Güç Türbinli Süperkritik Kapalı Bir Çevrimin İncelenmesi

Year 2024, , 125 - 136, 26.12.2024
https://doi.org/10.29048/makufebed.1532250

Abstract

Bu çalışmada, bağımsız güç türbinli transkritik kapalı çevrimin termodinamik analizi yapılmıştır. Çevrim akışkanı olarak termofiziksel özellikleriyle ön plana çıkan karbondioksit (CO2) akışkanı tercih edilmiştir. Brayton güç çevrim esasına dayalı çevrime ek olarak bağımsız bir güç türbin ilave edilerek çevrim parametreleri incelenmiştir. Çevrimin analizi Engineering Equation Solver (EES) adlı bilgisayar programından faydalanılarak çevrimin termodinamik hesaplamaları yapılmıştır. Farklı çevrim parametrelerinde türbin giriş sıcaklık ve basıncının, kompresör basınç oranı, kompresör verimi, yüksek ve alçak (bağımsız) basınçlı türbin veriminin ve kompresör giriş sıcaklıklarının çevrimin enerji-ekserji verimine ve çevrim net gücüne etkileri incelenmiştir. Bununla birlikte çevrimdeki alçak basınçlı (bağımsız) türbinin çevrim üzerindeki etkileri değerlendirilmiştir. Türbin parametreleri incelendiğinde alçak basınçlı (bağımsız) türbinin çevrim verimine doğrudan %4.12 etki ettiği tespit edilmiştir. Çevrim parametrelerinde maksimum enerji verimi %20.07, ekserji verimi %39.22 ve çevrim net gücü 306.4 kW olarak hesaplanmıştır. Güç çevrimlerinde, CO2 türbinlerinin kullanımının sağladığı faydalar ve alçak basınçlı (bağımsız) türbinin çevrime etkileri değerlendirilmiştir. CO2 türbinleri ile ilgili elde edilebilecek kazanımlar tartışılmıştır.

References

  • Amare, D. F., Aklilu, T. B., & Gilani, S. I. (2016). Effects of performance deterioration on gas path measurements in an industrial gas turbine. ARPN Journal of Engineering and Applied Sciences, 11(24), 14202– 14207.
  • Chen, Y., Pridasawas, W., & Lundqvist, P. (2010). Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production. Solar Energy, 84(7), 1103–1110. https://doi.org/10.1016/j.solener.2010.03.006
  • Chen, L., Feng, H., Ge, Y., & Shi, S. (2023). Power and efficiency optimizations for an open cycle two-shaft gas turbine power plant. Propulsion and Power Research, 12(4), 457–466. https://doi.org/10.1016/j.jppr.2023.10.001
  • Çengel, Y. A., & Boles, M. A. (2008). Termodinamik: Mühendislik yaklaşımıyla (5. baskı). Güven Kitabevi.
  • Ding, T., Liang, L. J., & Li, Z. (2015). Analytics of the Rankine cycle system using CO2 as a working fluid. Journal of Engineering Thermophysics, 36(2), 410–413.
  • Guo, J. Q., Li, M. J., He, Y. L., Jiang, T., Ma, T., Xu, J. L., & Cao, F. (2022). A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Conversion and Management, 258, Article 115437. https://doi.org/10.1016/j.enconman.2022.115437
  • Ishiyama, S., Muto, Y., Kato, Y., Nishio, S., Hayashi, T., & Nomoto, Y. (2008). Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor. Progress in Nuclear Energy, 50(2–6), 325–332. https://doi.org/10.1016/j.pnucene.2007.11.078
  • Jiang, Y., Zhan, L., Tian, K., & Nie, C. (2023). Thermodynamic performance comparison and optimization of sCO2 Brayton cycle, tCO2 Brayton cycle and tCO2 Rankine cycle. Journal of Thermal Science, 32, 611–627. https://doi.org/10.1007/s11630-023-1708-z
  • Kim, Y. M., Kim, C. G., & Favrat, D. (2012). Transcritical or supercritical CO2 cycles using both low and hightemperature heat sources. Energy, 43(1), 402–415. https://doi.org/10.1016/j.energy.2012.03.076
  • Kumar, P., & Srinivasan, K. (2016). Carbon dioxide-based power generation in renewable energy systems. Applied Thermal Engineering, 109, 831–840. https://doi.org/10.1016/j.applthermaleng.2016.06.08 2
  • Liu, Y., Wang, Y., & Huang, D. (2019). Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy, 189, Article 115900. https://doi.org/10.1016/j.energy.2019.115900
  • Mecheri, M., & Le Moullec, Y. (2016). Supercritical CO2 Brayton cycles for coal-fired power plants. Energy, 103, 758–771.
  • Pan, L. S., Wei, X. L., & Shi, W. X. (2015). Theoretical investigation on a novel CO2 transcritical power cycle. Journal of Engineering Thermophysics, 36(6), 1182– 1185.
  • Pan, L., Li, B., Wei, X., & Li, T. (2016). Experimental investigation on the CO2 transcritical power cycle. Energy, 95, 247–254. https://doi.org/10.1016/j.energy.2015.11.074
  • Park, S. H., Kim, J. Y., Yoon, M. K., Rhim, D. R., & Yeom, C. S. (2018). Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle. Applied Thermal Engineering, 130, 611–623. https://doi.org/10.1016/j.applthermaleng.2017.10.14 5
  • Sun, Z., Wang, J., Dai, Y., & Wang, J. (2012). Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO2 power cycle. International Journal of Hydrogen Energy, 37(25), 18731–18739. https://doi.org/10.1016/j.ijhydene.2012.08.028
  • Xia, J., Wang, J., Zhang, G., Lou, J., Zhao, P., & Dai, D. (2018). Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids. Applied Thermal Engineering, 144, 31– 44. https://doi.org/10.1016/j.applthermaleng.2018.08.01 2
  • Zhang, X., Yamaguchi, H., & Uneno, D. (2007). Experimental study on the performance of solar Rankine system using supercritical CO2. Renewable Energy, 32(15), 2617–2628. https://doi.org/10.1016/j.renene.2007.01.003
  • Zhao, P., Wang, J., Dai, Y., & Gao, L. (2015). Thermodynamic analysis of a hybrid energy system based on CAES system and CO2 transcritical power cycle with LNG cold energy utilization. Applied Thermal Engineering, 91, 718–730. https://doi.org/10.1016/j.applthermaleng.2015.08.08 2
  • Zhou, J., Zhang, C., Su, S., Wang, Y., Hu, S., & Liu, L. (2018). Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant. Energy Conversion and Management, 173, 348–358.

A Study of a Supercritical Closed Cycle with Independent Power Turbine

Year 2024, , 125 - 136, 26.12.2024
https://doi.org/10.29048/makufebed.1532250

Abstract

In this study, thermodynamic analysis of a transcritical closed cycle with independent power turbine was performed. Carbon dioxide (CO2), which stands out with its thermophysical properties, was preferred as the cycle fluid. In addition to the cycle based on the Brayton power cycle, an independent power turbine was added and the cycle parameters were examined. Analysis of the cycle Thermodynamic calculations of the cycle were made using the computer program called Engineering Equation Solver (EES). The effects of turbine inlet temperature and pressure, compressor pressure ratio, compressor efficiency, high and low (independent) pressure turbine efficiency and compressor inlet temperatures on the energy-exergy efficiency and net power of the cycle under different cycle parameters were examined. Additionally, the effects of the low-pressure (independent) turbine in the cycle were evaluated. When the turbine parameters were examined, it was determined that the low-pressure (independent) turbine directly affected the cycle efficiency by 4.12%. In the cycle parameters, maximum energy efficiency was calculated as 20.07%, exergy efficiency was 39.22% and cycle net power was calculated as 306.4 kW. In power cycles, the benefits of using CO2 turbines and the effects of a low-pressure (independent) turbine on the cycle have been evaluated. The gains that can be achieved regarding CO2 turbines are discussed.

References

  • Amare, D. F., Aklilu, T. B., & Gilani, S. I. (2016). Effects of performance deterioration on gas path measurements in an industrial gas turbine. ARPN Journal of Engineering and Applied Sciences, 11(24), 14202– 14207.
  • Chen, Y., Pridasawas, W., & Lundqvist, P. (2010). Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production. Solar Energy, 84(7), 1103–1110. https://doi.org/10.1016/j.solener.2010.03.006
  • Chen, L., Feng, H., Ge, Y., & Shi, S. (2023). Power and efficiency optimizations for an open cycle two-shaft gas turbine power plant. Propulsion and Power Research, 12(4), 457–466. https://doi.org/10.1016/j.jppr.2023.10.001
  • Çengel, Y. A., & Boles, M. A. (2008). Termodinamik: Mühendislik yaklaşımıyla (5. baskı). Güven Kitabevi.
  • Ding, T., Liang, L. J., & Li, Z. (2015). Analytics of the Rankine cycle system using CO2 as a working fluid. Journal of Engineering Thermophysics, 36(2), 410–413.
  • Guo, J. Q., Li, M. J., He, Y. L., Jiang, T., Ma, T., Xu, J. L., & Cao, F. (2022). A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects. Energy Conversion and Management, 258, Article 115437. https://doi.org/10.1016/j.enconman.2022.115437
  • Ishiyama, S., Muto, Y., Kato, Y., Nishio, S., Hayashi, T., & Nomoto, Y. (2008). Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor. Progress in Nuclear Energy, 50(2–6), 325–332. https://doi.org/10.1016/j.pnucene.2007.11.078
  • Jiang, Y., Zhan, L., Tian, K., & Nie, C. (2023). Thermodynamic performance comparison and optimization of sCO2 Brayton cycle, tCO2 Brayton cycle and tCO2 Rankine cycle. Journal of Thermal Science, 32, 611–627. https://doi.org/10.1007/s11630-023-1708-z
  • Kim, Y. M., Kim, C. G., & Favrat, D. (2012). Transcritical or supercritical CO2 cycles using both low and hightemperature heat sources. Energy, 43(1), 402–415. https://doi.org/10.1016/j.energy.2012.03.076
  • Kumar, P., & Srinivasan, K. (2016). Carbon dioxide-based power generation in renewable energy systems. Applied Thermal Engineering, 109, 831–840. https://doi.org/10.1016/j.applthermaleng.2016.06.08 2
  • Liu, Y., Wang, Y., & Huang, D. (2019). Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy, 189, Article 115900. https://doi.org/10.1016/j.energy.2019.115900
  • Mecheri, M., & Le Moullec, Y. (2016). Supercritical CO2 Brayton cycles for coal-fired power plants. Energy, 103, 758–771.
  • Pan, L. S., Wei, X. L., & Shi, W. X. (2015). Theoretical investigation on a novel CO2 transcritical power cycle. Journal of Engineering Thermophysics, 36(6), 1182– 1185.
  • Pan, L., Li, B., Wei, X., & Li, T. (2016). Experimental investigation on the CO2 transcritical power cycle. Energy, 95, 247–254. https://doi.org/10.1016/j.energy.2015.11.074
  • Park, S. H., Kim, J. Y., Yoon, M. K., Rhim, D. R., & Yeom, C. S. (2018). Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle. Applied Thermal Engineering, 130, 611–623. https://doi.org/10.1016/j.applthermaleng.2017.10.14 5
  • Sun, Z., Wang, J., Dai, Y., & Wang, J. (2012). Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO2 power cycle. International Journal of Hydrogen Energy, 37(25), 18731–18739. https://doi.org/10.1016/j.ijhydene.2012.08.028
  • Xia, J., Wang, J., Zhang, G., Lou, J., Zhao, P., & Dai, D. (2018). Thermo-economic analysis and comparative study of transcritical power cycles using CO2-based mixtures as working fluids. Applied Thermal Engineering, 144, 31– 44. https://doi.org/10.1016/j.applthermaleng.2018.08.01 2
  • Zhang, X., Yamaguchi, H., & Uneno, D. (2007). Experimental study on the performance of solar Rankine system using supercritical CO2. Renewable Energy, 32(15), 2617–2628. https://doi.org/10.1016/j.renene.2007.01.003
  • Zhao, P., Wang, J., Dai, Y., & Gao, L. (2015). Thermodynamic analysis of a hybrid energy system based on CAES system and CO2 transcritical power cycle with LNG cold energy utilization. Applied Thermal Engineering, 91, 718–730. https://doi.org/10.1016/j.applthermaleng.2015.08.08 2
  • Zhou, J., Zhang, C., Su, S., Wang, Y., Hu, S., & Liu, L. (2018). Exergy analysis of a 1000 MW single reheat supercritical CO2 Brayton cycle coal-fired power plant. Energy Conversion and Management, 173, 348–358.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Energy
Journal Section Research Paper
Authors

Volkan Ceylan 0000-0003-3355-2656

Arif Emre Özgür 0000-0001-6382-5462

Publication Date December 26, 2024
Submission Date August 12, 2024
Acceptance Date October 21, 2024
Published in Issue Year 2024

Cite

APA Ceylan, V., & Özgür, A. E. (2024). Bağımsız Güç Türbinli Süperkritik Kapalı Bir Çevrimin İncelenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(2), 125-136. https://doi.org/10.29048/makufebed.1532250