Cucumber (Cucumis sativus L.), one of the 30 Cucumis species found worldwide, is the most economically significant. Specified that Pseudoperonospora cubensis causes downy mildew, one of the most destructive foliar diseases affecting cucumbers and other cucurbits. Using a combination of the QuEChERS technique and HPLC, the residue levels and rate of degradation of the commercial fungicide, contained two active components (metalaxyl-M and chlorothalonil), in the cucumber were determined. Additionally, the fungicide's effectiveness was assessed. The experiment was conducted in a greenhouse with a randomized block pattern in the eastern Iraqi city of Ramadi, Anbar Governorate. Cucumbers grown in greenhouses were found to have high amounts of metalaxyl-M and chlorothalonil residues. The fungicide required about 14 days to completely dissipate from the cucumber fruits. The recoveries of chlorothalonil and metalaxyl-M were 90.3 and 86.7%, respectively. The half-lives of metalaxyl-M and chlorothalonil were determined as 0.90 and 0.85, respectively.
Al-Rahman, S. H., Almaz, M. M., & Ahmed, N. S. (2012). Dissipation of fungicides, insecticides, and Acaricide in tomato using HPLC-dad and Quechers methodology. Food Analytical Methods, 5(3), 564–570. https://doi.org/10.1007/s12161-011-9279-0
Al-Oubaidie, A. B., Ali, A. J., Sumir, S. H., Al-Samaraie, O. I., & Ali, M. H. (2018). Degradation study of thiophanatemethyl residues in cucumber (Cucumis sativus). Pakistan Journal of Biotechnology, 15(4), 961-963.
Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412-431. https://doi.org/10.1093/jaoac/86.2.412
Authority, European Food Safety Authority (EFSA) (2015). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for diquat according to Article 12 of Regulation (EC) No 396/2005. https://doi.org/10.2903/j.efsa.2015.3972
Awasthi, A. M., Degiorgi, L., Grüner, G., Dalichaouch, Y., & Maple, M. B. (1993). Complete optical spectrum of CeAl 3. Physical Review B, 48(15), 10692. https://doi.org/10.1103/PhysRevB.48.10692
Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402-1419. https://doi.org/10.3390/ijerph8051402
Đorđević, T., & Đurović-Pejčev, R. (2016). Food processing as a means for pesticide residue dissipation. Pesticides and Phytomedicine, 31(3-4), 89-105. https://doi.org/10.2298/PIF1604089D
Gambacorta, G., Faccia, M., Lamacchia, C., Di Luccia, A., & La Notte, E. (2005). Pesticide residues in tomato grown in open field. Food Control, 16(7), 629-632. https://doi.org/10.1016/j.foodcont.2004.07.002
Ghanbari, F., Mazaherilaghab, H., & Khodakaramian, G. (2024). Qualitative evaluation and biological effects of the leaf and bulb heat-stable proteins in two garlic clones (Allium sativum). Agrotechniques in Industrial Crops, 4(1), 16-23. https://doi.org/10.22126/atic.2024.9201.1106
Kamrin, M. A. (1997). Pesticide profiles: toxicity, environmental impact, and fate. CRC press. https://doi.org/10.1201/9780367802172
Krol, W. J., Arsenault, T. L., Pylypiw, H. M., & Incorvia Mattina, M. J. (2000). Reduction of pesticide residues on produce by rinsing. Journal of Agricultural and Food Chemistry, 48(10), 4666-4670. https://doi.org/10.1021/jf0002894
Moye, H. A., Malagodi, M. H., Yoh, J., Leibee, G. L., Ku, C. C., & Wislocki, P. G. (1987). Residues of avermectin B1a in rotational crops and soils following soil treatment with [14C] avermectin B1a. Journal of Agricultural and Food Chemistry, 35(6), 859-864. https://doi.org/10.1021/jf00078a003
Omer, H. A., Abdel-Magid, S. S., & Awadalla, I. M. (2019). Nutritional and chemical evaluation of dried pomegranate (Punica granatum L.) peels and studying the impact of level of inclusion in ration formulation on productive performance of growing Ossimi lambs. Bulletin of the National Research Centre, 43, 1-10. https://doi.org/10.1186/s42269-019-0245-0
Pihlström, T., Fernández-Alba, A. R., Amate, C. F., Poulsen, M. E., Hardebusch, B., Anastassiades, M., et al. (2021). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Sante, 11312, https://food.ec.europa.eu/system/files/2023- 11/pesticides_mrl_guidelines_wrkdoc_2021- 11312.pdf.
Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K., & Day, B. (2011). The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology, 12(3), 217-226. https://doi.org/10.1111/j.1364-3703.2010.00670.x
Soliman, H. M. (2021). The residual behavior of chlorothalonil and metalaxyl in the egyptian cucumbers fields infested with downy mildew using the highperformance liquid chromatography (HPLC) and quechers method. Journal of Plant Protection and Pathology, 12(7), 485-489. https://doi.org/10.21608/jppp.2021.83659.1026
Talebi, K. (2002). Effects of two different formulations of metalaxyl on their residues in cucumber. Mededelingen (Rijksuniv. te Gent. Fak. Landbouwk. Toegepaste Biol. Wetensch.), 67(2), 79-83.
Urech, P. A., Schwinn, F., & Staub, T. (1977). CGA 48988 a novel fungicide for the control of late blight, downy mildews and related soil borne diseases. In British Crop Protection Conference; Proceedings (pp. 623-631).
Vemuri, S. B., Rao, C. S., Darsi, R., Reddy, H., Aruna, M., Ramesh, B., & Swarupa, S. (2014). Methods for removal of pesticide residues in tomato. Food Science and Technology, 2(5), 64-68. https://doi.org/10.13189/fst.2014.020502
WHO. (2017). Evaluation of certain contaminants in food: ninety-third report of the joint FAO/WHO expert committee on food additives. World Health Organization.
Zhang, Z. Y., Liu, X. J., Yu, X. Y., Zhang, C. Z., & Hong, X. Y. (2007). Pesticide residues in the spring cabbage (Brassica oleracea L. var. capitata) grown in open field. Food Control, 18(6), 723-730. https://doi.org/10.1016/j.foodcont.2006.04.001
Zieliński, H., Surma, M., & Zielińska, D. (2017). The naturally fermented sour pickled cucumbers. In J. Frias, C. Martinez-Villaluenga, & E. Peñas (Eds.), Fermented foods in health and disease prevention (pp. 503–516). Academic Press.
Metalaxyl-M ve Chlorothalonil'i̇n Hıyarda Tüylü Küf Hastalığına Karşı Etkisinin Değerlendirilmesi̇ ve Kalıntılarının Araştırılması
Cucumis sativus L., dünya çapında bulunan 30 hıyar türünden biri olup ekonomik açıdan en önemli olanıdır. Pseudoperonospora cubensis, salatalık ve diğer kabakgilleri etkileyen en yıkıcı yaprak hastalıklarından biri olan tüylü küfe neden olan mantardır. QuEChERS tekniği ve HPLC'nin bir kombinasyonu kullanılarak, iki aktif bileşen (metalaxyl-M ve chlorothalonil) içeren ticari fungisitlerin salatalıktaki kalıntı seviyeleri ve bozunma oranları tespit edilmiştir. Ayrıca, fungisitlerin etkinliği de değerlendirilmiştir. Deney, Irak'ın doğusundaki Anbar vilayetinin Ramadi kentinde bulunan tesadüfi blok desenli bir serada, salatalık mahsulü üzerinde yürütülmüştür. Seralarda yetiştirilen salatalıklarda yüksek miktarda metalaxyl-M ve chlorothalonil kalıntıları bulunmuştur. Fungisitin salatalık meyvelerinden tamamen kaybolması için yaklaşık 14 gün gerekmiştir. Klorotalonil ve metalaksil-M'nin geri kazanımı sırasıyla %90,3 ve %86,7 olmuştur. Metalaxyl-M ve klorothalonil'in yarı ömürleri sırasıyla 0.90 ve 0.85'tir.
Al-Rahman, S. H., Almaz, M. M., & Ahmed, N. S. (2012). Dissipation of fungicides, insecticides, and Acaricide in tomato using HPLC-dad and Quechers methodology. Food Analytical Methods, 5(3), 564–570. https://doi.org/10.1007/s12161-011-9279-0
Al-Oubaidie, A. B., Ali, A. J., Sumir, S. H., Al-Samaraie, O. I., & Ali, M. H. (2018). Degradation study of thiophanatemethyl residues in cucumber (Cucumis sativus). Pakistan Journal of Biotechnology, 15(4), 961-963.
Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412-431. https://doi.org/10.1093/jaoac/86.2.412
Authority, European Food Safety Authority (EFSA) (2015). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for diquat according to Article 12 of Regulation (EC) No 396/2005. https://doi.org/10.2903/j.efsa.2015.3972
Awasthi, A. M., Degiorgi, L., Grüner, G., Dalichaouch, Y., & Maple, M. B. (1993). Complete optical spectrum of CeAl 3. Physical Review B, 48(15), 10692. https://doi.org/10.1103/PhysRevB.48.10692
Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402-1419. https://doi.org/10.3390/ijerph8051402
Đorđević, T., & Đurović-Pejčev, R. (2016). Food processing as a means for pesticide residue dissipation. Pesticides and Phytomedicine, 31(3-4), 89-105. https://doi.org/10.2298/PIF1604089D
Gambacorta, G., Faccia, M., Lamacchia, C., Di Luccia, A., & La Notte, E. (2005). Pesticide residues in tomato grown in open field. Food Control, 16(7), 629-632. https://doi.org/10.1016/j.foodcont.2004.07.002
Ghanbari, F., Mazaherilaghab, H., & Khodakaramian, G. (2024). Qualitative evaluation and biological effects of the leaf and bulb heat-stable proteins in two garlic clones (Allium sativum). Agrotechniques in Industrial Crops, 4(1), 16-23. https://doi.org/10.22126/atic.2024.9201.1106
Kamrin, M. A. (1997). Pesticide profiles: toxicity, environmental impact, and fate. CRC press. https://doi.org/10.1201/9780367802172
Krol, W. J., Arsenault, T. L., Pylypiw, H. M., & Incorvia Mattina, M. J. (2000). Reduction of pesticide residues on produce by rinsing. Journal of Agricultural and Food Chemistry, 48(10), 4666-4670. https://doi.org/10.1021/jf0002894
Moye, H. A., Malagodi, M. H., Yoh, J., Leibee, G. L., Ku, C. C., & Wislocki, P. G. (1987). Residues of avermectin B1a in rotational crops and soils following soil treatment with [14C] avermectin B1a. Journal of Agricultural and Food Chemistry, 35(6), 859-864. https://doi.org/10.1021/jf00078a003
Omer, H. A., Abdel-Magid, S. S., & Awadalla, I. M. (2019). Nutritional and chemical evaluation of dried pomegranate (Punica granatum L.) peels and studying the impact of level of inclusion in ration formulation on productive performance of growing Ossimi lambs. Bulletin of the National Research Centre, 43, 1-10. https://doi.org/10.1186/s42269-019-0245-0
Pihlström, T., Fernández-Alba, A. R., Amate, C. F., Poulsen, M. E., Hardebusch, B., Anastassiades, M., et al. (2021). Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Sante, 11312, https://food.ec.europa.eu/system/files/2023- 11/pesticides_mrl_guidelines_wrkdoc_2021- 11312.pdf.
Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K., & Day, B. (2011). The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology, 12(3), 217-226. https://doi.org/10.1111/j.1364-3703.2010.00670.x
Soliman, H. M. (2021). The residual behavior of chlorothalonil and metalaxyl in the egyptian cucumbers fields infested with downy mildew using the highperformance liquid chromatography (HPLC) and quechers method. Journal of Plant Protection and Pathology, 12(7), 485-489. https://doi.org/10.21608/jppp.2021.83659.1026
Talebi, K. (2002). Effects of two different formulations of metalaxyl on their residues in cucumber. Mededelingen (Rijksuniv. te Gent. Fak. Landbouwk. Toegepaste Biol. Wetensch.), 67(2), 79-83.
Urech, P. A., Schwinn, F., & Staub, T. (1977). CGA 48988 a novel fungicide for the control of late blight, downy mildews and related soil borne diseases. In British Crop Protection Conference; Proceedings (pp. 623-631).
Vemuri, S. B., Rao, C. S., Darsi, R., Reddy, H., Aruna, M., Ramesh, B., & Swarupa, S. (2014). Methods for removal of pesticide residues in tomato. Food Science and Technology, 2(5), 64-68. https://doi.org/10.13189/fst.2014.020502
WHO. (2017). Evaluation of certain contaminants in food: ninety-third report of the joint FAO/WHO expert committee on food additives. World Health Organization.
Zhang, Z. Y., Liu, X. J., Yu, X. Y., Zhang, C. Z., & Hong, X. Y. (2007). Pesticide residues in the spring cabbage (Brassica oleracea L. var. capitata) grown in open field. Food Control, 18(6), 723-730. https://doi.org/10.1016/j.foodcont.2006.04.001
Zieliński, H., Surma, M., & Zielińska, D. (2017). The naturally fermented sour pickled cucumbers. In J. Frias, C. Martinez-Villaluenga, & E. Peñas (Eds.), Fermented foods in health and disease prevention (pp. 503–516). Academic Press.
Mohammed1, S. J. M., Güçlü, G., Kahrizi, P. D. D., Gürkök Tan, T. (2024). Evaluation of The Effect of Metalaxyl-M and Chlorothalonil Against Downy Mildew in Cucumber and Investigation of Their Residues. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(2), 103-110. https://doi.org/10.29048/makufebed.1536050