Araştırma Makalesi
BibTex RIS Kaynak Göster

The Acute Effect of Mercury Chloride on mtDNA

Yıl 2017, , 206 - 210, 11.10.2017
https://doi.org/10.29048/makufebed.320127

Öz

Mercury is a highly toxic environmental pollutant.
Molecular mechanisms of mercury toxicity are assorted. Basically, they block
essential functional groups in biomolecules and also displace essential metal
ions from them. Mercuric ion is known as one of the strongest thiol-binding
agents. Although the oxidative properties of mercury have been studied and
accepted the actual process of ROS generation is still unclear. The aim of the
current study is to examine the acute effects of mercury chloride exposure on
mtDNA damage and mtDNA copy number in Drosophila.
Quantitative PCR method was used to measure mtDNA damage. In the mercury
chloride application groups, mtDNA damage and mtDNA copy number were slightly
greater than the control group but the difference was not statistically significant.
We demonstrated that the mercury chloride application does not generate the
damage on mtDNA of Drosophila
melanogaster
in 24 hours treatment.

Kaynakça

  • Al-azzawie, H.F., Umran, A., Hyader, N.H. (2013). Oxidative Stress, Antioxidant Status and DNA Damage in a Mercury Exposure Workers. British Journal of Pharmacology and Toxicology 4: 80-88.
  • Barcelos, G.R.M., Angeli, J.P.F., Serpeloni, J.M., Grotto, D., Rocha, B.A., Bastos, J.K., Knasmüller, S., Junior, F.B. (2011). Quercetin Protects Human Derived Liver Cells Against Mercury Induced DNA Damage and Alterations of the Redox Status. Mutation Research / Genetic Toxicology and Environmental Mutagenesis 726: 109-115.
  • Boffetta, P., Merler, E., Vainio, H. (1993). Carcinogenicity of Mercury and Mercury Compounds. Scandinavian Journal of Work, Environment and Health 19: 1-7.
  • Chen, C., Qu, L., Li, B., Xing, L., Jia, G., Wang, T., Gao, Y., Zhang, P., Li, M., Chen, W., Chai, Z. (2005). Increased Oxidative DNA Damage, as Assessed by Urinary 8-Hydroxy-2-Deoxyguanosine Concentrations, and Serum Redox Status in Persons Exposed to Mercury. Clinical Chemistry 51: 759-767. Costa, M., Christie, N.T., Cantoni, O., Zelikoff, J.T., Wang, X.W., Rossman, T.G. (1991). DNA Damage by Mercury Compounds: An Overview. Advances in Mercury Toxicology 255-273.
  • Durak, D., Kalender, S., Uzun, F.G., Demir, F., Kalender, Y. (2010). Mercury Chloride-Induced Oxidative Stress in Human Erythrocytes and the Effects of Vitamin C and E in vitro. African Journal of Biotechnology 9: 488-495.
  • Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. (2001). Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal Induced Oxidative Damage. Current Topics in Medicinal Chemistry 1: 529-539.
  • Guzzi, G., La Porta, C.A.M. (2008). Molecular MechansimsTriggered by Mercury. Toxicology 244: 1-12.
  • Hedges, S.B. (2002). The origin and evolution of model organisms. Nat Rev. 3: 838-849.
  • Karouna-Renier, N., White, C., Perkins, C.R., Schmerfeld, J.J., Yates, D. (2014). Assessment of Mitochondrial DNA Damage in Little Brown Bats (Myotis lucifugus) Collected Near a Mercury-Contaminated River. Ecotoxicology 23: 1419-1429.
  • Königsberg, M., Lopez-Diazguerrero, N.E., Bucio, L., Gutierrez-Ruiz, M.C. (2001). Uncoupling Effect of Mercuric Chloride on Mitochondria Isolated from an Hepatic Cell Line. Journal of Applied Toxicology 21: 323-329.
  • Lansdown, A.B.G. (2014). Book Review; The Carcinogenicity of Metals: Human Risk Through Occupational and Environmental Exposure. International Journal of Toxicology 33: 259-261.
  • Lesnefsky, E.J., Moghaddas, S., Tandler, B., Kerner, J., Hoppel, C.L. (2001). Mitochondrial dysfunction in cardiac disease: ischemia –reperfusion, aging and heart failure. J Mol Cell Cardiol 33: 1065-1089.
  • Liang, F-Q., Godley, B.F. (2003). Oxidative stres induced mtDNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and ge-related macular degeneration. Exp Eye Res 76: 397-403.
  • Lund, B., Miller, D.M., Woods, J.S. (1993). Studies on Hg(II) Induced H2O2 Formation and Oxidative Stress in vivo and in vitro in Rat Kidney Mitochondria. Biochem Pharmacol 45: 2017-2024. . Meyer, J.N., Leung, M.C.K., Rooney, J.P., Sendoel, A., Hengartner, M.O., Kisby, G.E., Bess, A.S. (2013). Mitochondria as a Target of Environmental Toxicants. Toxicological Sciences 134: 1-17.
  • Mieiro, C.L., Pardal, M., Duarte, A., Pereira, E., Palmeira, C.M. (2015). Impairment of Mitochondrial Energy Metabolism of Two Marine Fish by In Vitro Mercuric Chloride Exposure. Mar Pollut Bull 97: 488-93.
  • Mutlu, A.G., Fiskin, K. (2009). Can Vitamin E and Selenium Prevent Cigarette Smoke-Derived Oxidative mtDNA Damage? Turk J Biochem 34: 167-172.
  • Mutlu, A.G. (2012a) Measuring of DNA damage by Quantitative PCR. In: Polymerase Chain Reaction, edited by Hernandez-Rodriguez and Gomez (InTech, Rijeka, Croatia), 283-292.
  • Mutlu, A.G. (2012b) Increase in Mitochondrial DNA Copy Number in Response to Ochratoxin A and Methanol-Induced Mitochondrial DNA Damage in Drosophila. Bull Environ Contam Toxicol 89: 1129-1132.
  • Mutlu, A.G. (2013). The effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in aging Drosophila. ACTA Biologica Hungarica 64: 1-9.
  • Pereira, C.S., Guilherme, S.I., Barroso, C.M., Verschaeve, L., Pacheco, M.G., Mendo, S.A. (2010). Evaluation of DNA Damage Induced by Environmental Exposure to Mercury in Liza aurota Using the Comet Assay. Arch Environ Contam Toxicol 58: 112-22.
  • Santos, J.H., Mandavilli, B.S.,Van Houten, B. (2002). Measuring oxidative mtDNA damage and repair using QPCR. In: Mitochondrial DNA Methods and Protocols, edited by Copeland WC ( Humana Pres Inc, Totawa NJ), 159-176.
  • Sharpe, M.A., Livingston, A.D., Baski, D.S. (2012) Thimerosal-Derived Ethylmercury is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA. Journal of Toxicology doi: 10.1155/2012/373678.
  • Stohs, S.J., Bagchi, D. (1995). Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radical Biology and Medicine 18: 321-336.
  • Tran, D., Moody, A.J., Fisher, A.S., Foulkes, M.E., Jha, A.N. (2007). Protective Effects of Selenium on Mercury Induced DNA Damage in Mussel Haemocytes. Aquatic Toxicology. 84: 11-18.
  • Uyemura, S.A., Santos, N.A.G., Mingotto, F.E., Curti, C. (1997). Hg(II) Induced Renal Cytotoxicity: In vitro and In vivo Implications fort he Bioenergetic and Oxidative Status of Mitochondria. Molecular and Cellular Biochemistry 177: 53-59.
  • Valko, M., Morris, H., Cronin, M.T. (2005). Metals, Toxicity and Oxidative Stress. Curr Med Chem 12: 1161-208.
  • Venkatraman, A., Landar, A., Davis, A.J., Chamlee, L., Sandersoni, T., Kim, H., Page, G., Pompilius, M., Ballinger, S., Darley-Usmar, V., Bailey, S.M. (2004). Modification of the mitochondrial proteome in response to the stres of ethanol-dependent hepatoxicity. J Biol Chem 279: 22092-22101.
  • Weinberg, J.M., Harding, P.G., Humes, H.D. (1982). Mitochondrial Bioenergetics During the Initiation of Mercuric Chloride- İnduced Renal Injury. The Journal of Biological Chemistry 257: 60-67.
  • Yakes, F.M., Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94: 514-519.
  • Zahir, F., Rizwi, S.J., Haq, S.K., Khan, R.H. (2005). Low dose mercury toxicity and human health. Environmental toxicology and pharmacology 20: 351-360.

Civa Klorürün mtDNA'da Akut Etkisi

Yıl 2017, , 206 - 210, 11.10.2017
https://doi.org/10.29048/makufebed.320127

Öz

Civa çok zehirli bir
çevresel kirleticidir. Civa toksisitesinin moleküler mekanizmaları çeşitlidir.
Esasen, biyomoleküllerdeki temel fonksiyonel grupları bloke eder ve temel metal
iyonlarını onlardan uzaklaştırır. Civa iyonu, en güçlü tiol bağlayıcı
ajanlardan biri olarak bilinir. Civanın oksidatif özellikleri araştırılmış ve
kabul edilmiş olsa da, ROS oluşumunun gerçek süreci hala belirsizdir. Bu
çalışmanın amacı, civa klorür maruziyetinin, Drosophila'daki mtDNA hasarı ve mtDNA kopya sayısı üzerindeki akut
etkilerini incelemektir. Çalışmamızda mtDNA hasarını ölçmek için kantitatif PCR
yöntemi kullanıldı. Sonuçlara göre, civa klorür uygulama gruplarında mtDNA
hasarı ve mtDNA kopya sayısı kontrol grubundan biraz daha fazlaydı, ancak bu
fark istatistiksel olarak anlamlı değildi. Buna dayanarak, civa klorür
uygulamasının Drosophila melanogaster'in
mtDNA'sında, akut hasar oluşturmadığı sonucuna varılmıştır.

Kaynakça

  • Al-azzawie, H.F., Umran, A., Hyader, N.H. (2013). Oxidative Stress, Antioxidant Status and DNA Damage in a Mercury Exposure Workers. British Journal of Pharmacology and Toxicology 4: 80-88.
  • Barcelos, G.R.M., Angeli, J.P.F., Serpeloni, J.M., Grotto, D., Rocha, B.A., Bastos, J.K., Knasmüller, S., Junior, F.B. (2011). Quercetin Protects Human Derived Liver Cells Against Mercury Induced DNA Damage and Alterations of the Redox Status. Mutation Research / Genetic Toxicology and Environmental Mutagenesis 726: 109-115.
  • Boffetta, P., Merler, E., Vainio, H. (1993). Carcinogenicity of Mercury and Mercury Compounds. Scandinavian Journal of Work, Environment and Health 19: 1-7.
  • Chen, C., Qu, L., Li, B., Xing, L., Jia, G., Wang, T., Gao, Y., Zhang, P., Li, M., Chen, W., Chai, Z. (2005). Increased Oxidative DNA Damage, as Assessed by Urinary 8-Hydroxy-2-Deoxyguanosine Concentrations, and Serum Redox Status in Persons Exposed to Mercury. Clinical Chemistry 51: 759-767. Costa, M., Christie, N.T., Cantoni, O., Zelikoff, J.T., Wang, X.W., Rossman, T.G. (1991). DNA Damage by Mercury Compounds: An Overview. Advances in Mercury Toxicology 255-273.
  • Durak, D., Kalender, S., Uzun, F.G., Demir, F., Kalender, Y. (2010). Mercury Chloride-Induced Oxidative Stress in Human Erythrocytes and the Effects of Vitamin C and E in vitro. African Journal of Biotechnology 9: 488-495.
  • Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. (2001). Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal Induced Oxidative Damage. Current Topics in Medicinal Chemistry 1: 529-539.
  • Guzzi, G., La Porta, C.A.M. (2008). Molecular MechansimsTriggered by Mercury. Toxicology 244: 1-12.
  • Hedges, S.B. (2002). The origin and evolution of model organisms. Nat Rev. 3: 838-849.
  • Karouna-Renier, N., White, C., Perkins, C.R., Schmerfeld, J.J., Yates, D. (2014). Assessment of Mitochondrial DNA Damage in Little Brown Bats (Myotis lucifugus) Collected Near a Mercury-Contaminated River. Ecotoxicology 23: 1419-1429.
  • Königsberg, M., Lopez-Diazguerrero, N.E., Bucio, L., Gutierrez-Ruiz, M.C. (2001). Uncoupling Effect of Mercuric Chloride on Mitochondria Isolated from an Hepatic Cell Line. Journal of Applied Toxicology 21: 323-329.
  • Lansdown, A.B.G. (2014). Book Review; The Carcinogenicity of Metals: Human Risk Through Occupational and Environmental Exposure. International Journal of Toxicology 33: 259-261.
  • Lesnefsky, E.J., Moghaddas, S., Tandler, B., Kerner, J., Hoppel, C.L. (2001). Mitochondrial dysfunction in cardiac disease: ischemia –reperfusion, aging and heart failure. J Mol Cell Cardiol 33: 1065-1089.
  • Liang, F-Q., Godley, B.F. (2003). Oxidative stres induced mtDNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and ge-related macular degeneration. Exp Eye Res 76: 397-403.
  • Lund, B., Miller, D.M., Woods, J.S. (1993). Studies on Hg(II) Induced H2O2 Formation and Oxidative Stress in vivo and in vitro in Rat Kidney Mitochondria. Biochem Pharmacol 45: 2017-2024. . Meyer, J.N., Leung, M.C.K., Rooney, J.P., Sendoel, A., Hengartner, M.O., Kisby, G.E., Bess, A.S. (2013). Mitochondria as a Target of Environmental Toxicants. Toxicological Sciences 134: 1-17.
  • Mieiro, C.L., Pardal, M., Duarte, A., Pereira, E., Palmeira, C.M. (2015). Impairment of Mitochondrial Energy Metabolism of Two Marine Fish by In Vitro Mercuric Chloride Exposure. Mar Pollut Bull 97: 488-93.
  • Mutlu, A.G., Fiskin, K. (2009). Can Vitamin E and Selenium Prevent Cigarette Smoke-Derived Oxidative mtDNA Damage? Turk J Biochem 34: 167-172.
  • Mutlu, A.G. (2012a) Measuring of DNA damage by Quantitative PCR. In: Polymerase Chain Reaction, edited by Hernandez-Rodriguez and Gomez (InTech, Rijeka, Croatia), 283-292.
  • Mutlu, A.G. (2012b) Increase in Mitochondrial DNA Copy Number in Response to Ochratoxin A and Methanol-Induced Mitochondrial DNA Damage in Drosophila. Bull Environ Contam Toxicol 89: 1129-1132.
  • Mutlu, A.G. (2013). The effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in aging Drosophila. ACTA Biologica Hungarica 64: 1-9.
  • Pereira, C.S., Guilherme, S.I., Barroso, C.M., Verschaeve, L., Pacheco, M.G., Mendo, S.A. (2010). Evaluation of DNA Damage Induced by Environmental Exposure to Mercury in Liza aurota Using the Comet Assay. Arch Environ Contam Toxicol 58: 112-22.
  • Santos, J.H., Mandavilli, B.S.,Van Houten, B. (2002). Measuring oxidative mtDNA damage and repair using QPCR. In: Mitochondrial DNA Methods and Protocols, edited by Copeland WC ( Humana Pres Inc, Totawa NJ), 159-176.
  • Sharpe, M.A., Livingston, A.D., Baski, D.S. (2012) Thimerosal-Derived Ethylmercury is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA. Journal of Toxicology doi: 10.1155/2012/373678.
  • Stohs, S.J., Bagchi, D. (1995). Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radical Biology and Medicine 18: 321-336.
  • Tran, D., Moody, A.J., Fisher, A.S., Foulkes, M.E., Jha, A.N. (2007). Protective Effects of Selenium on Mercury Induced DNA Damage in Mussel Haemocytes. Aquatic Toxicology. 84: 11-18.
  • Uyemura, S.A., Santos, N.A.G., Mingotto, F.E., Curti, C. (1997). Hg(II) Induced Renal Cytotoxicity: In vitro and In vivo Implications fort he Bioenergetic and Oxidative Status of Mitochondria. Molecular and Cellular Biochemistry 177: 53-59.
  • Valko, M., Morris, H., Cronin, M.T. (2005). Metals, Toxicity and Oxidative Stress. Curr Med Chem 12: 1161-208.
  • Venkatraman, A., Landar, A., Davis, A.J., Chamlee, L., Sandersoni, T., Kim, H., Page, G., Pompilius, M., Ballinger, S., Darley-Usmar, V., Bailey, S.M. (2004). Modification of the mitochondrial proteome in response to the stres of ethanol-dependent hepatoxicity. J Biol Chem 279: 22092-22101.
  • Weinberg, J.M., Harding, P.G., Humes, H.D. (1982). Mitochondrial Bioenergetics During the Initiation of Mercuric Chloride- İnduced Renal Injury. The Journal of Biological Chemistry 257: 60-67.
  • Yakes, F.M., Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94: 514-519.
  • Zahir, F., Rizwi, S.J., Haq, S.K., Khan, R.H. (2005). Low dose mercury toxicity and human health. Environmental toxicology and pharmacology 20: 351-360.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ayşe Gül Mutlu

Hülya Yıldız Bu kişi benim

Yayımlanma Tarihi 11 Ekim 2017
Kabul Tarihi 9 Ekim 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Mutlu, A. G., & Yıldız, H. (2017). Civa Klorürün mtDNA’da Akut Etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(Ek (Suppl.) 1), 206-210. https://doi.org/10.29048/makufebed.320127