Effect of Innovative Quenching-Partitioning Heat Treatment on Microstructure and Hardness Properties of Medium Carbon Steel According to Traditional Quenching-Tempering Heat Treatment
Year 2019,
, 51 - 59, 29.07.2019
Merve Şehnaz İşyarlar
,
Ferhat Gül
Abstract
Ductility in the
formability of the steels is the desired material property. It is possible to
obtain the desired ductility by the traditional quenching-tempering heat
treatment which is often used in industry. However, decreasing the hardness of
steel with increasing ductility is an undesirable factor. It is aimed to obtain
a good combination of ductility and strength with the innovative
quenching-partitioning heat treatment. In this study, microstructure and
hardness properties of quenching-tempering and quenching-partitioning heat
treatments applied to steel having 0.38 carbon content were compared. Despite
the retained austenite observed in the microstructure, it was concluded that
the hardness values obtained by the quenching-partitioning heat treatment were
higher than the traditional quenching-tempering heat treatment.
References
- Arlazarov, A., Bouaziz, O., Masse, J. P., & Kegel, F. (2015). Characterization and modeling of mechanical behavior of quenching and partitioning steels. Materials Science and Engineering: A 620: 293-300.
- Bagliani, E. P., Santofimia, M. J., Zhao, L., Sietsma, J., & Anelli, E. (2013). Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel. Materials Science and Engineering: A 559: 486-495.
- Chipalkatti, J. (1999). Modeling of Austenite Decomposition in an AISI 4140 Steel. Doctoral Dissertation, University of British Columbia.
- De Diego Calderón, M. I. (2015). Mechanical Properties of Advanced High-Strength Steels Produced via Quenching And Partitioning. Doctoral Dissertation, Universidad Carlos III de Madrid.
- De Diego-Calderón, I., De Knijf, D., Monclús, M. A., Molina-Aldareguia, J. M., Sabirov, I., Föjer, C., & Petrov, R. H. (2015). Global and local deformation behavior and mechanical properties of individual phases in a quenched and partitioned steel. Materials Science and Engineering: A 630: 27-35.
- Digges, T. G., Rosenberg, S. J., & Geil, G. W. (1966). Heat Treatment and Properties of Iron and Steel. Natıonal Bureau of Standards Gaıthersburg Md.
- Dong, H. Y., Wu, K. M., Wang, X. L., Hou, T. P., & Yan, R. (2018). A comparative study on the three-body abrasive wear performance of Q&P processing and low-temperature bainitic transformation for a medium-carbon dual-phase steel, Wear 402: 21-29.Edmonds, D. V., He, K., Rizzo, F. C., De Cooman, B. C., Matlock, D. K., & Speer, J. G. (2006). Quenching and partitioning martensite—A novel steel heat treatment. Materials Science and Engineering: A 438: 25-34.
- Gao, G., Zhang, H., Tan, Z., Liu, W., & Bai, B. (2013). A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching–partitioning–tempering process. Materials Science and Engineering: A 559: 165-169.
- HajyAkbary, F., Sietsma, J., Miyamoto, G., Furuhara, T., & Santofimia, M. J. (2016). Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel. Acta Materialia 104: 72-83.
- Hao, Q., Qin, S., Liu, Y., Zuo, X., Chen, N., Huang, W., & Rong, Y. (2016). Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel. Materials Science and Engineering: A 662: 16-25.
- Hauserová, D., Nový, Z., Dlouhý, J., & Motyčka, P. (2011). Q-P processing of high-strength low-alloyed steel sheets. Metal’2011, Brno, Czech Republic, 1-5.
- Karam-Abian, M., Zarei-Hanzaki, A., Abedi, H. R., & Heshmati-Manesh, S. (2016). Micro and macro-mechanical behavior of a transformation-induced plasticity steel developed by thermomechanical processing followed by quenching and partitioning. Materials Science and Engineering: A 651: 233-240.
- Kolk, A. J. (2014). Is retained austenite controlling the mechanical properties of Q&P steels?. Delft University of Technology, Faculty Mechanical, Department Materials Science and Engineering, Master Thesis 1 s. Netherlands.
- Krauss, G. (1999). Martensite in steel: strength and structure. Materials Science and Engineering: A 273: 40-57.
- Liu, H., Jin, X., Dong, H., & Shi, J. (2011). Martensitic microstructural transformations from the hot stamping, quenching and partitioning process. Materials characterization 62(2): 223-227.
- Qu, H. (2013). Advanced high strength steel through para-equilibrium carbon partitioning and austenite stabilization. Doctoral Dissertation, Ph. D. Thesis, Case Western Reserve University, Cleveland, OH.
- Santofimia, M. J., Zhao, L., & Sietsma, J. (2009). Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization. Metallurgical and Materials Transactions A 40(1): 46.
- Speer, J. G., De Moor, E., & Clarke, A. J. (2015). Critical assessment 7: Quenching and partitioning. Materials Science and Technology 31(1): 3-9.
- Tan, X., Xu, Y., Yang, X., & Wu, D. (2014). Microstructure–properties relationship in a one-step quenched and partitioned steel. Materials Science and Engineering: A 589: 101-111.
- Tariq, F., & Baloch, R. A. (2014). One-step quenching and partitioning heat treatment of medium carbon low alloy steel. Journal of materials engineering and performance 23(5): 1726-1739.
- Wang, C. Y., Chang, Y., Yang, J., Cao, W. Q., & Dong, H. (2016). Work hardening behavior and stability of retained austenite for quenched and partitioned steels. Journal of Iron and Steel Research International 23(2): 130-137.
- Wang, C. Y., Shi, J., Cao, W. Q., & Dong, H. (2010). Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel. Materials Science and Engineering: A 527(15): 3442-3449.Wang, L., & Speer, J. G. (2013). Quenching and partitioning steel heat treatment. Metallography, Microstructure, and Analysis 2(4): 268-281.
- Wang, X. D., Guo, Z. H., & Rong, Y. H. (2011). Mechanism exploration of an ultrahigh strength steel by quenching–partitioning–tempering process. Materials Science and Engineering: A 529: 35-40.
- Wang, X. D., Xu, W. Z., Guo, Z. H., Wang, L., & Rong, Y. H. (2010). Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching–partitioning–tempering process. Materials Science and Engineering: A 527(15): 3373-3378.
- Yang, L. I., Lu, Y. P., Chong, W. A. N. G., Li, S. T., & Chen, L. B. (2011). Phase stability of residual austenite in 60Si2Mn steels treated by quenching and partitioning. Journal of Iron and Steel Research, International 18(2): 70-74.
- Zhou, S., Zhang, K., Wang, Y., Gu, J. F., & Rong, Y. H. (2011). High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching–partitioning–tempering process. Materials Science and Engineering: A 528(27): 8006-8012.
Klasik Su Verme-Temperleme Isıl İşlemine Göre Yenilikçi Su Verme-Ayrıştırma Isıl İşleminin Orta Karbonlu Çeliğin Mikroyapı ve Sertlik Özelliklerine Etkisi
Year 2019,
, 51 - 59, 29.07.2019
Merve Şehnaz İşyarlar
,
Ferhat Gül
Abstract
Çeliklerin
şekillendirilebilirliği bakımından süneklik, istenen bir malzeme özelliğidir.
Sanayide sıkça kullanılan bir işlem olan klasik su verme-temperleme ısıl işlemi
ile istenilen sünekliğin elde edilmesi mümkündür. Fakat sünekliğin artmasıyla
çeliğin sertliğinin azalması istenmeyen bir etkendir. Yenilikçi su
verme-ayrıştırma ısıl işlemi ile süneklik ve mukavemetin iyi bir
kombinasyonunun elde edilmesi amaçlanmaktadır. Bu çalışmada 0,38 karbon
miktarına sahip çeliğe uygulanan su verme-temperleme ve su verme-ayrıştırma
ısıl işlemlerinin mikroyapı ve sertlik özelliklerinin karşılaştırılması
yapılmıştır. Mikroyapıda varlığı gözlemlenen kalıntı östenite rağmen su
verme-ayrıştırma ısıl işlemi ile elde edilen sertlik değerlerinin, klasik su
verme-temperleme ısıl işlemine göre yüksek olduğu sonucuna varılmıştır.
References
- Arlazarov, A., Bouaziz, O., Masse, J. P., & Kegel, F. (2015). Characterization and modeling of mechanical behavior of quenching and partitioning steels. Materials Science and Engineering: A 620: 293-300.
- Bagliani, E. P., Santofimia, M. J., Zhao, L., Sietsma, J., & Anelli, E. (2013). Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel. Materials Science and Engineering: A 559: 486-495.
- Chipalkatti, J. (1999). Modeling of Austenite Decomposition in an AISI 4140 Steel. Doctoral Dissertation, University of British Columbia.
- De Diego Calderón, M. I. (2015). Mechanical Properties of Advanced High-Strength Steels Produced via Quenching And Partitioning. Doctoral Dissertation, Universidad Carlos III de Madrid.
- De Diego-Calderón, I., De Knijf, D., Monclús, M. A., Molina-Aldareguia, J. M., Sabirov, I., Föjer, C., & Petrov, R. H. (2015). Global and local deformation behavior and mechanical properties of individual phases in a quenched and partitioned steel. Materials Science and Engineering: A 630: 27-35.
- Digges, T. G., Rosenberg, S. J., & Geil, G. W. (1966). Heat Treatment and Properties of Iron and Steel. Natıonal Bureau of Standards Gaıthersburg Md.
- Dong, H. Y., Wu, K. M., Wang, X. L., Hou, T. P., & Yan, R. (2018). A comparative study on the three-body abrasive wear performance of Q&P processing and low-temperature bainitic transformation for a medium-carbon dual-phase steel, Wear 402: 21-29.Edmonds, D. V., He, K., Rizzo, F. C., De Cooman, B. C., Matlock, D. K., & Speer, J. G. (2006). Quenching and partitioning martensite—A novel steel heat treatment. Materials Science and Engineering: A 438: 25-34.
- Gao, G., Zhang, H., Tan, Z., Liu, W., & Bai, B. (2013). A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching–partitioning–tempering process. Materials Science and Engineering: A 559: 165-169.
- HajyAkbary, F., Sietsma, J., Miyamoto, G., Furuhara, T., & Santofimia, M. J. (2016). Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel. Acta Materialia 104: 72-83.
- Hao, Q., Qin, S., Liu, Y., Zuo, X., Chen, N., Huang, W., & Rong, Y. (2016). Effect of retained austenite on the dynamic tensile behavior of a novel quenching-partitioning-tempering martensitic steel. Materials Science and Engineering: A 662: 16-25.
- Hauserová, D., Nový, Z., Dlouhý, J., & Motyčka, P. (2011). Q-P processing of high-strength low-alloyed steel sheets. Metal’2011, Brno, Czech Republic, 1-5.
- Karam-Abian, M., Zarei-Hanzaki, A., Abedi, H. R., & Heshmati-Manesh, S. (2016). Micro and macro-mechanical behavior of a transformation-induced plasticity steel developed by thermomechanical processing followed by quenching and partitioning. Materials Science and Engineering: A 651: 233-240.
- Kolk, A. J. (2014). Is retained austenite controlling the mechanical properties of Q&P steels?. Delft University of Technology, Faculty Mechanical, Department Materials Science and Engineering, Master Thesis 1 s. Netherlands.
- Krauss, G. (1999). Martensite in steel: strength and structure. Materials Science and Engineering: A 273: 40-57.
- Liu, H., Jin, X., Dong, H., & Shi, J. (2011). Martensitic microstructural transformations from the hot stamping, quenching and partitioning process. Materials characterization 62(2): 223-227.
- Qu, H. (2013). Advanced high strength steel through para-equilibrium carbon partitioning and austenite stabilization. Doctoral Dissertation, Ph. D. Thesis, Case Western Reserve University, Cleveland, OH.
- Santofimia, M. J., Zhao, L., & Sietsma, J. (2009). Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization. Metallurgical and Materials Transactions A 40(1): 46.
- Speer, J. G., De Moor, E., & Clarke, A. J. (2015). Critical assessment 7: Quenching and partitioning. Materials Science and Technology 31(1): 3-9.
- Tan, X., Xu, Y., Yang, X., & Wu, D. (2014). Microstructure–properties relationship in a one-step quenched and partitioned steel. Materials Science and Engineering: A 589: 101-111.
- Tariq, F., & Baloch, R. A. (2014). One-step quenching and partitioning heat treatment of medium carbon low alloy steel. Journal of materials engineering and performance 23(5): 1726-1739.
- Wang, C. Y., Chang, Y., Yang, J., Cao, W. Q., & Dong, H. (2016). Work hardening behavior and stability of retained austenite for quenched and partitioned steels. Journal of Iron and Steel Research International 23(2): 130-137.
- Wang, C. Y., Shi, J., Cao, W. Q., & Dong, H. (2010). Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel. Materials Science and Engineering: A 527(15): 3442-3449.Wang, L., & Speer, J. G. (2013). Quenching and partitioning steel heat treatment. Metallography, Microstructure, and Analysis 2(4): 268-281.
- Wang, X. D., Guo, Z. H., & Rong, Y. H. (2011). Mechanism exploration of an ultrahigh strength steel by quenching–partitioning–tempering process. Materials Science and Engineering: A 529: 35-40.
- Wang, X. D., Xu, W. Z., Guo, Z. H., Wang, L., & Rong, Y. H. (2010). Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching–partitioning–tempering process. Materials Science and Engineering: A 527(15): 3373-3378.
- Yang, L. I., Lu, Y. P., Chong, W. A. N. G., Li, S. T., & Chen, L. B. (2011). Phase stability of residual austenite in 60Si2Mn steels treated by quenching and partitioning. Journal of Iron and Steel Research, International 18(2): 70-74.
- Zhou, S., Zhang, K., Wang, Y., Gu, J. F., & Rong, Y. H. (2011). High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching–partitioning–tempering process. Materials Science and Engineering: A 528(27): 8006-8012.