Review
BibTex RIS Cite

A Study on the Production Process and Properties of Cement-Based Wood Composite Materials

Year 2019, , 219 - 228, 20.12.2019
https://doi.org/10.29048/makufebed.607377

Abstract

Due to the growing environmental concern, lignocellulosic
materials have become a common substitute for the conventional reinforcement
element in composite strcutures. However, these natural sources are preferred
to cost efficient and to increase mechanical performances. In a cement bonded
composites, wood is incorporated as an aggregate in the mineral matrix (as
fibres, sawdust, shavings or particles), and cement acts as a binder. These are
employed due to their ease of production, and the enhanced biodegradability,
leading to applications for sustainable purposes in construction applications. Wood-cement
composites are considerably better performance on high fire, weathering and
bio-deterioration risk applications to which solid wood and resin bonded
composites are vulnerable. However, the vast of literature on cement-wood
bonded composites has already been reviewed and pointed by a number of researchers.
Many valuable fundamental informations have already established for utilizing
wood for these products. A comprehensive results was to investigate some wood
species that are abundant resources in many countries, for their suitability
for manufacturing such composites.

References

  • Antona, B. and Johanson, R. (2011). Crack control of concrete structures subjected to restraint forces, influence of fibre reinforcement, Msc. Thesis, Chalmers University of Technology, Göteborg, Sweden.
  • ASTM C150 / C150M-18. (2018). Standard specification for Portland cement, ASTM International, West Conshohocken, PA.
  • Ashori, A., Tabarsa, T., & Sepahvand, S. (2011). Cement-bonded composite boards made from poplar strands, Construction and Building Materials, 26(1): 131-134.
  • Boothby, T.E., Borroughs, C.B., Bernecker, C.A., Manbeck, H.B., Ritter, M.A., Grgurevich, S., Cegelka, S. and Lee, P.D. (2001). Design of wood highway sound barriers, USDA Forest Service, FPL- Research Paper-596.Madison, WI.
  • Buchmayer, K. (1999). Plant layout and start-up off fiber cement manufacturing plants, In: Inorganic-Bonded Wood and Fiber Composite Materials, A.A. Moslemi (Ed), University of Idaho, Moscow, ID, pp.99–140.
  • Coutts, R.S.P. and Kightly, P. (1984). Bonding in wood fibre-cement composites. Journal ofMaterialsScience 19(10): 3355-3359.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2014). Wood-wool cement board: optimized inorganic coating, Proceedings of the 14’th International Inorganic-Bonded Fiber Composites Conference (IIBCC), 15-19 September 2014, Da Nang, Vietnam, pp. 154-164.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2015a). Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars, Construction and Building Materials,143: 48-60.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2015b). The effect of glucose on the hydration kinetics of ordinary Portland cement, in: 1’st Interntional Conf. Biobased Build. Mater., Clermont-Ferrand, France, pp. 1–6.
  • Fan, M. (1997). Dimensional instability of cement bonded particleboard. PhD Thesis. University of Wales, UK.
  • Fan, M., Dinwoodie, J.M., Bonfield, P.W., Breese, M.C. (1999). Dimensional instability of cement-bonded particleboard: behavior of cement paste and its contribution to the composite. Wood Fibre Science, 31(3):306–318.
  • Fan, M., Bonfield, P. and Dinwoodie, J. (2006). Nature and behaviour of cement bonded particleboard: structure, physical property and movement, Journal of Material Science, 41(17): 5666–5678.
  • Fan, M., Ndikontar, M. K., Zhou, X. and Ngamveng, J. N. (2012). Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Construction and Building Materials,36, 135–140.
  • FCM Maschinen-und Anlagenbau GmbH. (1998). Hatschek process, (Formerly Voith in St. Pölten / Austria). http://www.fcm.at/index.html. Reach date: 18.07.2018.Fengel, D. and Wegener, G. (1984). Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, NY.
  • Frybort, R., Mauritz, A., Teischinger, U. and Müller. (2008). Cement bonded composites-a mechanical review, BioResources, 3: 602-626.
  • Jo, B-W. and Chakraborty, S. (2015). A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste, Scientific Reports, 5.
  • Jorge, F.C., Pereira, C. and Ferreira, J.M.F. (2004). Wood–cement composites: A review. Holz als Roh und Werkstoff, 62(5):370-377.
  • Kabir, M.M., Wang, H., Lau, K.T., Cardona, F. and Aravinthan, T. (2012). Mechanicalproperties of chemically-treated hemp fibre reinforced sandwich composites, Composites Part B-Engineering. 43(2):159-69.
  • Kuroki, Y., Nagatomi, W., Yamada, J. (1993). Manufacture of light-weight cement-bonded particle board, In: Inorganic-Bonded Wood and Fiber Composite Materials, A.A. Moslemi (Ed.), Forest Products Society, Madison, WI, pp.136–142.
  • Kruger, E.L., Adriazola, M., Matoski, A. and Iwakiri, S. (2009). Thermal analysis of wood–cement panels: heat flux and indoor temperature measurements in test cells. Constr Build Mater, 23(6):2299–2305.
  • Lan, H.F. and Huang, Y.F. (2000). Manufacturing of cement-bonded wood particle composites and acoustic characteristics. Forest Products Industries (Taiwan) 19(1): 85-99.
  • Lea, F. M. (1970). The Chemistry of Cement and Concrete. 3’rd edn, E. Arnold, London.
  • Lee, A.W.C. (1984). Physical and mechanical properties of cement bonded southern pine excelsior board, Forest Products Journal, 34(4):30-34.
  • Lee, A.W.C. and Short, P.H. (1989). Pretreating hardwood for cement-bonded excelsior board. Forest Products Journal 39(10): 68-70.
  • Li, G.Y., Wang, P.M. and Zhao, X. (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon, 43 (6): 1239-1245.
  • Lipinsky, E.S. (1989). Potential technologies for effectively bonding wood with inorganic binders, Proceedings 1st Inorganic Bonded Fiber Composites Symposium, A.A. Moslemi (Ed), Forest Products Research Society, pp. 53-57.
  • Malhotra, R. (2013). http://chemistryofmaterials2013.wikidot.com/rahul-malhotra, Reach date: 18.07.2018.
  • Moslemi, A.A. (1989). Wood-cement panel products: coming of age, in Proceedings 1st Inorganic Bonded Fiber Composites Symposium, A.A. Moslemi (Ed), Forest Products Research Society, pp. 12-18.
  • Moslemi, A.A. (1993). Inorganic-bonded wood composites: From sludge to siding. Journal of Forestry, 27-29.
  • Moslemi, A.A. and Begum, S. (2017). Wood Composites: Mineral-Bonded, In: Reference Module in Materials Science and Materials Engineering.
  • Mougel, E., Beraldo, A.L. and Zoulalian, A. (1995). Controlled dimensional variations of a wood-cement composite, Holzforschung 49(5):471–477.
  • Simatupang, M.H. and Geimer, R.L. (1990). Inorganic binder for wood composites: feasibility and limitations, Wood adhesive symposium proceedings, May 16-18, 1990, Madison, WI. pp. 169–176. Wolfe, R.W. and Gijnolli, A. (1997). Cement-Bonded Wood Composites as an Engineering Material. Use of Recycled Wood and Paper in Building Applications, Forest Products Society Proceedings No. 7286, Madison, WI. pp. 84–91.
  • Pickering, K.L., Efendy, M.G.A., Le, T.M. (2016). Areview of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing, 83: 98-112.
  • Semple, K.E. and Evans, P.D. (2004). Wood-cement composites - Suitability of Western Australian mallee eucalypt, blue gum and melaleucas, Rural Industries Research and Development Corporation, Publication No. 04/102. Kingston, AU.
  • Plekhanova, T.A., Keriene, J., Gailius, A. and Yakovlev, G.I. (2007). Structural, physical and mechanical properties of modified wood–magnesia composite. Construction Build Material, 21:1833–1838.
  • Wolfe, R.W. and Gjinolli, A. (1999). Durability and strength of cementbonded wood particle composites made from construction waste. Forest Products Journal 49(2):24–31.
  • Sjöström, E. (1993). Wood Chemistry: Fundamentals and Applications, Academic Press, NY.
  • Taylor, H.F.W. (1997). Cement chemistry. Thomas Telford.
  • Van Elten, G.J. (1996). Innovation in the Production of Cement-Bonded Particleboard and Wood-Wool Cement Board, 5th International Inorganic Bonded Wood and Fiber Composite Materials Conference. Spokane, Washington, USA.
  • Van Elten, G. J. (2006). Production of wood wool cement board and wood strand cement board (eltoboard) on one plant and applications of the products. Proceedings 10th Int. Inorganic-Bonded Fiber Composites Conference (pp. 1–12). Sao Paulo-Brazil.
  • Youngquist, J. A. (1999). Wood-based Composites and Panel Products, In: Wood handbook: wood as an engineering material, USDA Forest Service, FPL; GTR-113: Pp. 10.1-10.31.

Çimento Esaslı Odun Kompozit Malzemelerin Üretim Prosesi ve Özellikleri Üzerine Bir Çalışma

Year 2019, , 219 - 228, 20.12.2019
https://doi.org/10.29048/makufebed.607377

Abstract

Çevre ve doğayı korumaya
olan ilginin giderek artması sonucu, lignoselüloik esaslı kaynakların kompozit
malzemelerin yapısında güçlendirici eleman olarak kullanımına olan ilginin
artmasına neden olmuştur.  Zira bu doğal
kaynaklar, daha düşük maliyetlidirler ve yeterli direnç özelliklerin
sahiptirler. Çimento ile yapıştırılmış odun esaslı kompozit malzemelerde tipik
olarak çimento ile odun veya türevleri (talaş, yonga, lif vb.) mineral matris
yapıda çimento ile bağ yaparak çimentonun bağlayıcılığında bir arada
bulunurlar.  Bu malzemeler, kolay üretime
imkan sağlamaları yanında gelişmiş biyobozunma sağlamaları ve sürdürülebilir
kaynaklardan üretilmelerinden dolayı yapı ve konstrüksiyon işleri için
uygundurlar. Odun-çimento esaslı kompozit malzemeler, sentetik reçine ile
üretilmiş kompozitlere göre daha yüksek yangına, dış atmosferik şartlara ve
biyolojik bozunmalara dayanım gösterirler. Günümüzde, çimento esaslı kompozitler
çok sayıda literatür bilgileri mevcuttur. Birçok araştırmacı tarafından
çimento-esaslı kompozit malzemelerin üzerine çalışmalar yapılmış ve bulgular
rapor edilmiştir. Birçok önemli ve değerli bilgiler bu çalışmalardan
sağlanabilir.  Farklı odun türleri için
dünyanın bazı bölgelerinde karşılaştırmalı çalışmalar yapılmış ve çimentolu
üretime uygunlukları uygunluğu konusunda bazı öneriler bulunmaktadır.

References

  • Antona, B. and Johanson, R. (2011). Crack control of concrete structures subjected to restraint forces, influence of fibre reinforcement, Msc. Thesis, Chalmers University of Technology, Göteborg, Sweden.
  • ASTM C150 / C150M-18. (2018). Standard specification for Portland cement, ASTM International, West Conshohocken, PA.
  • Ashori, A., Tabarsa, T., & Sepahvand, S. (2011). Cement-bonded composite boards made from poplar strands, Construction and Building Materials, 26(1): 131-134.
  • Boothby, T.E., Borroughs, C.B., Bernecker, C.A., Manbeck, H.B., Ritter, M.A., Grgurevich, S., Cegelka, S. and Lee, P.D. (2001). Design of wood highway sound barriers, USDA Forest Service, FPL- Research Paper-596.Madison, WI.
  • Buchmayer, K. (1999). Plant layout and start-up off fiber cement manufacturing plants, In: Inorganic-Bonded Wood and Fiber Composite Materials, A.A. Moslemi (Ed), University of Idaho, Moscow, ID, pp.99–140.
  • Coutts, R.S.P. and Kightly, P. (1984). Bonding in wood fibre-cement composites. Journal ofMaterialsScience 19(10): 3355-3359.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2014). Wood-wool cement board: optimized inorganic coating, Proceedings of the 14’th International Inorganic-Bonded Fiber Composites Conference (IIBCC), 15-19 September 2014, Da Nang, Vietnam, pp. 154-164.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2015a). Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars, Construction and Building Materials,143: 48-60.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2015b). The effect of glucose on the hydration kinetics of ordinary Portland cement, in: 1’st Interntional Conf. Biobased Build. Mater., Clermont-Ferrand, France, pp. 1–6.
  • Fan, M. (1997). Dimensional instability of cement bonded particleboard. PhD Thesis. University of Wales, UK.
  • Fan, M., Dinwoodie, J.M., Bonfield, P.W., Breese, M.C. (1999). Dimensional instability of cement-bonded particleboard: behavior of cement paste and its contribution to the composite. Wood Fibre Science, 31(3):306–318.
  • Fan, M., Bonfield, P. and Dinwoodie, J. (2006). Nature and behaviour of cement bonded particleboard: structure, physical property and movement, Journal of Material Science, 41(17): 5666–5678.
  • Fan, M., Ndikontar, M. K., Zhou, X. and Ngamveng, J. N. (2012). Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Construction and Building Materials,36, 135–140.
  • FCM Maschinen-und Anlagenbau GmbH. (1998). Hatschek process, (Formerly Voith in St. Pölten / Austria). http://www.fcm.at/index.html. Reach date: 18.07.2018.Fengel, D. and Wegener, G. (1984). Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, NY.
  • Frybort, R., Mauritz, A., Teischinger, U. and Müller. (2008). Cement bonded composites-a mechanical review, BioResources, 3: 602-626.
  • Jo, B-W. and Chakraborty, S. (2015). A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste, Scientific Reports, 5.
  • Jorge, F.C., Pereira, C. and Ferreira, J.M.F. (2004). Wood–cement composites: A review. Holz als Roh und Werkstoff, 62(5):370-377.
  • Kabir, M.M., Wang, H., Lau, K.T., Cardona, F. and Aravinthan, T. (2012). Mechanicalproperties of chemically-treated hemp fibre reinforced sandwich composites, Composites Part B-Engineering. 43(2):159-69.
  • Kuroki, Y., Nagatomi, W., Yamada, J. (1993). Manufacture of light-weight cement-bonded particle board, In: Inorganic-Bonded Wood and Fiber Composite Materials, A.A. Moslemi (Ed.), Forest Products Society, Madison, WI, pp.136–142.
  • Kruger, E.L., Adriazola, M., Matoski, A. and Iwakiri, S. (2009). Thermal analysis of wood–cement panels: heat flux and indoor temperature measurements in test cells. Constr Build Mater, 23(6):2299–2305.
  • Lan, H.F. and Huang, Y.F. (2000). Manufacturing of cement-bonded wood particle composites and acoustic characteristics. Forest Products Industries (Taiwan) 19(1): 85-99.
  • Lea, F. M. (1970). The Chemistry of Cement and Concrete. 3’rd edn, E. Arnold, London.
  • Lee, A.W.C. (1984). Physical and mechanical properties of cement bonded southern pine excelsior board, Forest Products Journal, 34(4):30-34.
  • Lee, A.W.C. and Short, P.H. (1989). Pretreating hardwood for cement-bonded excelsior board. Forest Products Journal 39(10): 68-70.
  • Li, G.Y., Wang, P.M. and Zhao, X. (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon, 43 (6): 1239-1245.
  • Lipinsky, E.S. (1989). Potential technologies for effectively bonding wood with inorganic binders, Proceedings 1st Inorganic Bonded Fiber Composites Symposium, A.A. Moslemi (Ed), Forest Products Research Society, pp. 53-57.
  • Malhotra, R. (2013). http://chemistryofmaterials2013.wikidot.com/rahul-malhotra, Reach date: 18.07.2018.
  • Moslemi, A.A. (1989). Wood-cement panel products: coming of age, in Proceedings 1st Inorganic Bonded Fiber Composites Symposium, A.A. Moslemi (Ed), Forest Products Research Society, pp. 12-18.
  • Moslemi, A.A. (1993). Inorganic-bonded wood composites: From sludge to siding. Journal of Forestry, 27-29.
  • Moslemi, A.A. and Begum, S. (2017). Wood Composites: Mineral-Bonded, In: Reference Module in Materials Science and Materials Engineering.
  • Mougel, E., Beraldo, A.L. and Zoulalian, A. (1995). Controlled dimensional variations of a wood-cement composite, Holzforschung 49(5):471–477.
  • Simatupang, M.H. and Geimer, R.L. (1990). Inorganic binder for wood composites: feasibility and limitations, Wood adhesive symposium proceedings, May 16-18, 1990, Madison, WI. pp. 169–176. Wolfe, R.W. and Gijnolli, A. (1997). Cement-Bonded Wood Composites as an Engineering Material. Use of Recycled Wood and Paper in Building Applications, Forest Products Society Proceedings No. 7286, Madison, WI. pp. 84–91.
  • Pickering, K.L., Efendy, M.G.A., Le, T.M. (2016). Areview of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing, 83: 98-112.
  • Semple, K.E. and Evans, P.D. (2004). Wood-cement composites - Suitability of Western Australian mallee eucalypt, blue gum and melaleucas, Rural Industries Research and Development Corporation, Publication No. 04/102. Kingston, AU.
  • Plekhanova, T.A., Keriene, J., Gailius, A. and Yakovlev, G.I. (2007). Structural, physical and mechanical properties of modified wood–magnesia composite. Construction Build Material, 21:1833–1838.
  • Wolfe, R.W. and Gjinolli, A. (1999). Durability and strength of cementbonded wood particle composites made from construction waste. Forest Products Journal 49(2):24–31.
  • Sjöström, E. (1993). Wood Chemistry: Fundamentals and Applications, Academic Press, NY.
  • Taylor, H.F.W. (1997). Cement chemistry. Thomas Telford.
  • Van Elten, G.J. (1996). Innovation in the Production of Cement-Bonded Particleboard and Wood-Wool Cement Board, 5th International Inorganic Bonded Wood and Fiber Composite Materials Conference. Spokane, Washington, USA.
  • Van Elten, G. J. (2006). Production of wood wool cement board and wood strand cement board (eltoboard) on one plant and applications of the products. Proceedings 10th Int. Inorganic-Bonded Fiber Composites Conference (pp. 1–12). Sao Paulo-Brazil.
  • Youngquist, J. A. (1999). Wood-based Composites and Panel Products, In: Wood handbook: wood as an engineering material, USDA Forest Service, FPL; GTR-113: Pp. 10.1-10.31.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Paper
Authors

Halil Turgut Şahin 0000-0001-5633-6505

Ali İhsan Kaya 0000-0002-1860-9610

Ömer Ümit Yalçın This is me 0000-0003-2241-3677

Şemsettin Kılınçarslan This is me 0000-0001-8253-9357

Yasemin Şimşek This is me 0000-0002-3080-0215

George İ. Mantanis 0000-0002-5715-783X

Publication Date December 20, 2019
Acceptance Date October 21, 2019
Published in Issue Year 2019

Cite

APA Şahin, H. T., Kaya, A. İ., Yalçın, Ö. Ü., Kılınçarslan, Ş., et al. (2019). A Study on the Production Process and Properties of Cement-Based Wood Composite Materials. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 219-228. https://doi.org/10.29048/makufebed.607377