Review
BibTex RIS Cite

Biology and Natural Sources of Vitamin D

Year 2020, , 380 - 391, 29.12.2020
https://doi.org/10.29048/makufebed.778498

Abstract

Vitamin D deficiency and insufficiency are among the important health problems worldwide. Vitamin D, which is synthesized by sun exposure (specific wavelength ultraviolet UVB rays), is known to act as a natural protector, preventing and delaying many chronic and autoimmune diseases, as well as its regulatory role in calcium and phosphate metabolism. People and other creatures need vitamin D to keep their lives healthy and strong. In this review, after briefly mentioning the importance of vitamin D for health, information based on the studies in the literature has been presented about the creatures rich in vitamin D metabolites, especially for the purpose of people to benefit from other organisms as a source of vitamin D. Although there are few ecological data on this subject, various findings have been compiled about the species that synthesize and accumulate vitamin D, which we can use as natural sources. In the studies done, phytoplanktonic algae, reindeer lichen, fungi and also fish and lichens accumulating vitamin D are among the creatures that produce high amounts of vitamin D with the effect of UVB. In addition, in this study, explanatory information on the photochemical synthesis metabolism and biology of the vitamin D and the biological and environmental factors affecting the formation of vitamin D are included. This review focuses on the potential of living things that can provide a predictable vitamin D source for humans.

References

  • Acarkan, T. (2015). D Vitamini. Journal of Complementary Medicine, Regulation and Neural Therapy, 9(3): 5-8.
  • Afzal, S., Bojesen, S.E., Nordestgaard, B.G. (2014). Reduced 25-hydroxyvitamin D and risk of Alzheimer’s disease and vascular dementia. Alzheimer's & Dementia, 10(3): 296-302.
  • Akkoyun, H.T., Bayramoğlu, M., Ekin, S., Çelebi, F. (2014). D Vitamini ve Metabolizma İçin Önemi. Atatürk Üniversitesi Vet. Bil. Derg. 9(3): 213-219.
  • Al-Amoody, A.A., Yayman, D., Kaan, T., Özkök, E.A., Özcan, A., Özen, E., Çobanoğlu Özyiğitoğlu, G. (2020). Role of Lichen Secondary Metabolites And Pigments In UV-Screening Phenomenon In Lichens. Acta Biologica Turcica 33(1): 35-48.
  • Björn, L.O., Wang, T. (2000). Vitamin D in an ecological context. Int J Circumpolar Health, 59(1): 26–32.
  • Black, L.J., Lucas, R.M., Sherriff, J.L., Björn, L.O., Bornman, J.F. (2017). In Pursuit of Vitamin D in Plants. Nutrients, 9: 136.
  • Brown, J., Bianco, J.I., McGrath, J.J., Eyles, D.W. (2003). 1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 343: 139–143.
  • Brumfield, K.M., Laborde, S.M., Moroney, J.V. (2017). A model for the ergosterol biosynthetic pathway in Chlamydomonas reinhardtii, European Journal of Phyco-logy 52(1): 64-74.
  • Buffoni Hall, R.S., Bornman, J.F., Bjorn, L.O. (2002). UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. Journal of Photochemistry and Photobiology, 66: 13-20.
  • Cardwell, G., Bornman, J.F., James, A.P., Black, L.J. (2018). A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 10: 1498.
  • Chubarova, N., Zhdanova, Y. (2013). Ultraviolet resources over Northern Eurasia. Journal of Photochemistry and Photobiology B: Biology 127: 38–51.
  • Çalışkan Özçelik, D., Koçer H., Kasım İ., Şencan İ., Kahveci R., Özkara A. (2012). D Vitamini. Turkish Medical Journal 6(2): 61-67.
  • Deduke, C., Timsina, B., Piercey-Normore, M.D. (2012). Effect of Environmental Change on Secondary Metabolite Production In Lichen Forming Fungi. In: Young S., (Ed.) International Perspectives on Global Environmental Change. InTech, pp: 197-230.
  • Dusso, A.S., Brown, A.J., Slatopolsky, E. (2005). Vitamin D. Am J Physiol Renal Physiol 289: F8–F28.
  • Eyles, D.W., Burne, T.H.J., McGrath, J.J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology 34: 47–64.
  • Ferguson, G.W., Gehrmann, W.H., Karsten, K.B., Landwer, A.J., Carman, E.N., Chen, T.C., Holick, M.F. (2005). Ult-raviolet Exposure and Vitamin D Synthesis in a Sun‐Dwelling and a Shade‐Dwelling Species of Anolis: Are There Adaptations for Lower Ultraviolet B and Dietary Vi-tamin D3 Availability in the Shade? Physiological and Biochemical Zoology 78(2): 193-200.
  • Fidan, F., Alkan, B.M., Tosun, A. (2014). Çağın Pandemisi: D Vitamini Eksikliği ve Yetersizliği. Türk Osteoporoz Dergisi 20: 71-74.
  • Göring, H. (2018). ISSN 0006_2979, Biochemistry (Moscow), 2018, Vol. 83, No. 11, pp. 1350_1357. © Pleiades Publishing, Ltd., 2018. Original Russian Text © H. Göring, 2018, published in Biokhimiya, 83(11):1663-1672.
  • Grant, W.B. (2002). An Estimate of Premature Cancer Mortality in the U.S. Due to Inadequate Doses of Solar Ultraviolet-B Radiation. Cancer 9(6): 1867-1875.
  • Grant, W.B., Wimalawansa, S.J., Holick, M.F., Cannell, J.J., Pludowski, P., Lappe, J.M., Pittaway, M., May, P. (2015). Emphasizing the Health Benefits of Vitamin D for Those with Neurodevelopmental Disorders and Intellectual Disabilities. Nutrients 7: 1538-1564.
  • Grigalavicius, M., Juzeniene, A., Baturaite, Z., Dahlback, A., Moan, J. (2013). Biologically efficient solar radiation Vitamin D production and induction of cutaneous malignant melanoma. Dermato-Endocrinology 5(1): 150–158.
  • Groves ,N.J., Kesby, J.P., Eyles, D.W., McGrath, J.J., Mackay-Sim, A., Burne, T.H.J. (2013). Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behavioural Brain Research 241: 120– 131.
  • Gürbüz, P., Yetiş, G., Yakupoğulları, A. (2015). D Vitamini: İnsan Vücudunda Etkinliği Ve Eksikliği. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 3(2): 7-11.
  • Haussler, M.R, Jurutka, P.W., Mizwicki, M., Norman, A.W. (2011). Vitamin D receptor (VDR)-mediated actions of 1a,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Practice & Research Clinical Endocrinology & Metabolism, 25: 543–559.
  • Henry, H.L. (2011). Regulation of vitamin D metabolism. Best Practice & Research Clinical Endocrinology & Metabolism, 25: 531–541.
  • Holick, M.F. (1989). Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans, in Vertebrate Endocrinology: Fundamentals and Biomedical Implications (Pank P.K.T., Schreibman M.P., eds.) Academic Press, Orlando, FL, pp. 7-43.
  • Holick, M.F., Tian, X.Q., Allen, M. (1995). Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals. Proc. Natl. Acad. Sci. USA, 92, 3124-3126.
  • Holick, M.F. (2007). Vitamin D Deficiency. The new england journal of medicine, 357: 266-81.
  • Holick, M.F. (2009). Vitamin D and Health: Evolution, Biologic Functions, and Recommended Dietary Intakes for Vitamin D. Clinic Rev Bone Miner Metab 7: 2-19.
  • Hughes, L.J., Black, L.J., Sherriff, J.L., Dunlop, E., Strobel, N., Lucas, R.M., Bornman, J.F. (2018). Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients 10: 876.
  • Jäpelt, R.B., Jakobsen, J. (2013). Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Frontiers in Plant Science 4 (136): 1- 20.
  • Jasinghe, V.J., Perera C.O., Barlow, P.J. (2006). Vitamin D2 from Irradiated Mushrooms Significantly Increases Fe-mur Bone Mineral Density in Rats, Journal of Toxicology and Environmental Health, Part A, 69(21): 1979-1985.
  • Keegan, Raphael-John, H., Lu, Z., Bogusz, J.M., Williams, J.E., Holick, M.F. (2013) Photobiology of vitamin D in mushrooms and its bioavailability in humans, Dermato-Endocrinology 5(1): 165-176.
  • Kesby, J.P., Eyles, D.W., Burne, T.H.J., McGrath, J.J. (2011). The effects of vitamin D on brain development and adult brain function. Molecular and Cellular Endocrinology 347: 121–127.
  • Kozlov, A., Khabarova, Y., Vershubsky, G., Ateeva, Y., Ryzhaenkov, V. (2014). Vitamin D status of northern indigenous people of Russia leading traditional and ‘‘modernized’’ way of life. Int J Circumpolar Health 73: 26038.
  • Mackay-Sim, A., Fe´ron, F., Eyles, D., Burne, T., McGrath, J. (2004). Schizophrenia, Vitamin D, and Brain Development. International Review of Neurobiology 59: 351-380.
  • McGrath, J.J., Feron, F.P., Burne, T.H., Mackay-Sim, A., Eyles, D.W. (2004). Vitamin D3 implications for brain development. J Steroid Biochem Mol Biol 89–90: 557–560.
  • Öncül Börekçi, N.(2019). D Vitamini eksikliği ile ilgili güncel bilgiler. Jour Turk Fam Phy 10(1): 35-42.
  • Pendo, K., DeGiorgio, C.M. (2016). Vitamin D3 for the Treatment of Epilepsy: Basic Mechanisms, Animal Models, and Clinical Trials. Front Neurol 8(7): 218.
  • Phillips, KM, Horst, RL, Koszewski, NJ, Simon, RR (2012) Vitamin D4 in Mushrooms. PLoS ONE 7(8): e40702.
  • Pludowski, P., Holick, M.F., Grant, W.B., Konstantynowicz, J., Mascarenhas, M.R., Haq, A., Povoroznyuk, V., Balatska, N., Barbosa, A.P., Karonova, T., Rudenka, E., Misiorowski, W., Zakharova, I., Rudenka, A., Łukaszkiewicz, J., Marcinowska-Suchowierska, E., Łaszcz, N., Abramowicz, P., Bhattoa, H.P., Wimalawansa, S.J. (2018). Vitamin D supplementation guidelines. Journal of Steroid Biochemistry & Molecular Biology 175: 125–135.
  • Skliar, M., Curino, A., Milanesi, L., Benassati, S., Boland, R. (2000). Nicotiana glauca: another plant species containing vitamin D(3) metabolites. Plant Sci 156(2): 193-199.
  • Wacker, M., Holick, M.F. (2013). Sunlight and vitamin D: a global perspective for health, Dermatoendocrinology, 5: 51-108.
  • Wang, T., Bengtsson, G., Kärnefelt, I., Björn, L.O. (2001). Provitamins and vitamins D2 and D3 in Cladina spp. over a latitudinal gradient: possible correlation with UV levels. Journal of Photochemistry and Photobiology B: Biology, 62(1–2): 118-122.
  • Woloszynska-Read, A., Johnson, C.S., Trump, D.L. (2011). Vitamin D and cancer: Clinical aspects. Best Practice & Research Clinical Endocrinology & Metabolism, 25: 605–615.
  • Yılmaz, M., Yılmaz, N. (2013). D Vitaminin beyindeki rolü ve ilişkili nörolojik hastalıklar. Journal of Clinical and Experimental Investigations, 4(3): 411-415.
  • Yüksel, R.N., Altunsoy, N., Tikir, B., Külük, M.C., Unal, K., Goka, S., Aydemir, Ç., Goka, E. (2014). Correlation between total vitamin D levels and psychotic psychopathology in patients with schizophrenia: therapeutic implications for add-on vitamin D augmentation. Ther Adv Psychopharmacol 4(6): 268–275.

D Vitamininin Biyolojisi ve Doğal Kaynakları

Year 2020, , 380 - 391, 29.12.2020
https://doi.org/10.29048/makufebed.778498

Abstract

Dünya genelinde D vitamini eksikliği ve yetersizliği önemli sağlık sorunları arasındadır. Güneşe maruziyet ile (belirli dalga boyundaki ultraviyole UVB ışınları) sentezlenen D vitamininin kalsiyum ve fosfat metabolizmalarını düzenleyici rolünün yanında, doğal koruma, pek çok kronik ve otoimmün hastalığı önleme ve geciktirmede görev yaptığı bilin-mektedir. İnsanların ve diğer canlıların yaşamlarını sağlıklı ve güçlü sürdürebilmeleri için belirli seviyede tutulması gereken D vitaminine ihtiyaçları vardır. Bu derleme çalışmasında, D vitamininin sağlık için önemine kısaca değinildik-ten sonra, insanların D vitamini kaynağı olarak diğer organizmalardan faydalanabilmesi hedefine yönelik olarak, özellikle doğadaki D vitamini metabolitleri bakımından zengin canlılar ile ilgili bugüne kadar literatürde yer alan ça-lışmalara dayanan bilgiler sunulmuştur. Bu konuda ekolojik verilerin oldukça az olduğu görülmekle birlikte, bitkisel ve hayvansal doğal kaynaklar olarak yararlanabilecek D vitamini sentezleyen ve biriktiren canlı türleri hakkında çeşitli bulgular derlenmiştir. Yapılan çalışmalarda, UVB etkisiyle yüksek miktarda D vitamini üreten canlılar arasında fitop-lanktonik algler, Ren geyiği likeni, mantarlar ve D vitamini biriktiren balıklar ve likenler sayılmaktadır. Bunların yanı sıra bu çalışmada, D vitaminin biyolojisi ve fotokimyasal sentez metabolizması ve D vitamininin oluşumunu etkile-yen biyolojik ve çevresel faktörler hakkında açıklayıcı bilgilere yer verilmiştir. Bu derleme, insanlar için öngörülebilir D vitamini kaynağı sağlayabilecek canlıların potansiyeline odaklanmaktadır.

References

  • Acarkan, T. (2015). D Vitamini. Journal of Complementary Medicine, Regulation and Neural Therapy, 9(3): 5-8.
  • Afzal, S., Bojesen, S.E., Nordestgaard, B.G. (2014). Reduced 25-hydroxyvitamin D and risk of Alzheimer’s disease and vascular dementia. Alzheimer's & Dementia, 10(3): 296-302.
  • Akkoyun, H.T., Bayramoğlu, M., Ekin, S., Çelebi, F. (2014). D Vitamini ve Metabolizma İçin Önemi. Atatürk Üniversitesi Vet. Bil. Derg. 9(3): 213-219.
  • Al-Amoody, A.A., Yayman, D., Kaan, T., Özkök, E.A., Özcan, A., Özen, E., Çobanoğlu Özyiğitoğlu, G. (2020). Role of Lichen Secondary Metabolites And Pigments In UV-Screening Phenomenon In Lichens. Acta Biologica Turcica 33(1): 35-48.
  • Björn, L.O., Wang, T. (2000). Vitamin D in an ecological context. Int J Circumpolar Health, 59(1): 26–32.
  • Black, L.J., Lucas, R.M., Sherriff, J.L., Björn, L.O., Bornman, J.F. (2017). In Pursuit of Vitamin D in Plants. Nutrients, 9: 136.
  • Brown, J., Bianco, J.I., McGrath, J.J., Eyles, D.W. (2003). 1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 343: 139–143.
  • Brumfield, K.M., Laborde, S.M., Moroney, J.V. (2017). A model for the ergosterol biosynthetic pathway in Chlamydomonas reinhardtii, European Journal of Phyco-logy 52(1): 64-74.
  • Buffoni Hall, R.S., Bornman, J.F., Bjorn, L.O. (2002). UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. Journal of Photochemistry and Photobiology, 66: 13-20.
  • Cardwell, G., Bornman, J.F., James, A.P., Black, L.J. (2018). A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 10: 1498.
  • Chubarova, N., Zhdanova, Y. (2013). Ultraviolet resources over Northern Eurasia. Journal of Photochemistry and Photobiology B: Biology 127: 38–51.
  • Çalışkan Özçelik, D., Koçer H., Kasım İ., Şencan İ., Kahveci R., Özkara A. (2012). D Vitamini. Turkish Medical Journal 6(2): 61-67.
  • Deduke, C., Timsina, B., Piercey-Normore, M.D. (2012). Effect of Environmental Change on Secondary Metabolite Production In Lichen Forming Fungi. In: Young S., (Ed.) International Perspectives on Global Environmental Change. InTech, pp: 197-230.
  • Dusso, A.S., Brown, A.J., Slatopolsky, E. (2005). Vitamin D. Am J Physiol Renal Physiol 289: F8–F28.
  • Eyles, D.W., Burne, T.H.J., McGrath, J.J. (2013). Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology 34: 47–64.
  • Ferguson, G.W., Gehrmann, W.H., Karsten, K.B., Landwer, A.J., Carman, E.N., Chen, T.C., Holick, M.F. (2005). Ult-raviolet Exposure and Vitamin D Synthesis in a Sun‐Dwelling and a Shade‐Dwelling Species of Anolis: Are There Adaptations for Lower Ultraviolet B and Dietary Vi-tamin D3 Availability in the Shade? Physiological and Biochemical Zoology 78(2): 193-200.
  • Fidan, F., Alkan, B.M., Tosun, A. (2014). Çağın Pandemisi: D Vitamini Eksikliği ve Yetersizliği. Türk Osteoporoz Dergisi 20: 71-74.
  • Göring, H. (2018). ISSN 0006_2979, Biochemistry (Moscow), 2018, Vol. 83, No. 11, pp. 1350_1357. © Pleiades Publishing, Ltd., 2018. Original Russian Text © H. Göring, 2018, published in Biokhimiya, 83(11):1663-1672.
  • Grant, W.B. (2002). An Estimate of Premature Cancer Mortality in the U.S. Due to Inadequate Doses of Solar Ultraviolet-B Radiation. Cancer 9(6): 1867-1875.
  • Grant, W.B., Wimalawansa, S.J., Holick, M.F., Cannell, J.J., Pludowski, P., Lappe, J.M., Pittaway, M., May, P. (2015). Emphasizing the Health Benefits of Vitamin D for Those with Neurodevelopmental Disorders and Intellectual Disabilities. Nutrients 7: 1538-1564.
  • Grigalavicius, M., Juzeniene, A., Baturaite, Z., Dahlback, A., Moan, J. (2013). Biologically efficient solar radiation Vitamin D production and induction of cutaneous malignant melanoma. Dermato-Endocrinology 5(1): 150–158.
  • Groves ,N.J., Kesby, J.P., Eyles, D.W., McGrath, J.J., Mackay-Sim, A., Burne, T.H.J. (2013). Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice. Behavioural Brain Research 241: 120– 131.
  • Gürbüz, P., Yetiş, G., Yakupoğulları, A. (2015). D Vitamini: İnsan Vücudunda Etkinliği Ve Eksikliği. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 3(2): 7-11.
  • Haussler, M.R, Jurutka, P.W., Mizwicki, M., Norman, A.W. (2011). Vitamin D receptor (VDR)-mediated actions of 1a,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Practice & Research Clinical Endocrinology & Metabolism, 25: 543–559.
  • Henry, H.L. (2011). Regulation of vitamin D metabolism. Best Practice & Research Clinical Endocrinology & Metabolism, 25: 531–541.
  • Holick, M.F. (1989). Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans, in Vertebrate Endocrinology: Fundamentals and Biomedical Implications (Pank P.K.T., Schreibman M.P., eds.) Academic Press, Orlando, FL, pp. 7-43.
  • Holick, M.F., Tian, X.Q., Allen, M. (1995). Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals. Proc. Natl. Acad. Sci. USA, 92, 3124-3126.
  • Holick, M.F. (2007). Vitamin D Deficiency. The new england journal of medicine, 357: 266-81.
  • Holick, M.F. (2009). Vitamin D and Health: Evolution, Biologic Functions, and Recommended Dietary Intakes for Vitamin D. Clinic Rev Bone Miner Metab 7: 2-19.
  • Hughes, L.J., Black, L.J., Sherriff, J.L., Dunlop, E., Strobel, N., Lucas, R.M., Bornman, J.F. (2018). Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients 10: 876.
  • Jäpelt, R.B., Jakobsen, J. (2013). Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Frontiers in Plant Science 4 (136): 1- 20.
  • Jasinghe, V.J., Perera C.O., Barlow, P.J. (2006). Vitamin D2 from Irradiated Mushrooms Significantly Increases Fe-mur Bone Mineral Density in Rats, Journal of Toxicology and Environmental Health, Part A, 69(21): 1979-1985.
  • Keegan, Raphael-John, H., Lu, Z., Bogusz, J.M., Williams, J.E., Holick, M.F. (2013) Photobiology of vitamin D in mushrooms and its bioavailability in humans, Dermato-Endocrinology 5(1): 165-176.
  • Kesby, J.P., Eyles, D.W., Burne, T.H.J., McGrath, J.J. (2011). The effects of vitamin D on brain development and adult brain function. Molecular and Cellular Endocrinology 347: 121–127.
  • Kozlov, A., Khabarova, Y., Vershubsky, G., Ateeva, Y., Ryzhaenkov, V. (2014). Vitamin D status of northern indigenous people of Russia leading traditional and ‘‘modernized’’ way of life. Int J Circumpolar Health 73: 26038.
  • Mackay-Sim, A., Fe´ron, F., Eyles, D., Burne, T., McGrath, J. (2004). Schizophrenia, Vitamin D, and Brain Development. International Review of Neurobiology 59: 351-380.
  • McGrath, J.J., Feron, F.P., Burne, T.H., Mackay-Sim, A., Eyles, D.W. (2004). Vitamin D3 implications for brain development. J Steroid Biochem Mol Biol 89–90: 557–560.
  • Öncül Börekçi, N.(2019). D Vitamini eksikliği ile ilgili güncel bilgiler. Jour Turk Fam Phy 10(1): 35-42.
  • Pendo, K., DeGiorgio, C.M. (2016). Vitamin D3 for the Treatment of Epilepsy: Basic Mechanisms, Animal Models, and Clinical Trials. Front Neurol 8(7): 218.
  • Phillips, KM, Horst, RL, Koszewski, NJ, Simon, RR (2012) Vitamin D4 in Mushrooms. PLoS ONE 7(8): e40702.
  • Pludowski, P., Holick, M.F., Grant, W.B., Konstantynowicz, J., Mascarenhas, M.R., Haq, A., Povoroznyuk, V., Balatska, N., Barbosa, A.P., Karonova, T., Rudenka, E., Misiorowski, W., Zakharova, I., Rudenka, A., Łukaszkiewicz, J., Marcinowska-Suchowierska, E., Łaszcz, N., Abramowicz, P., Bhattoa, H.P., Wimalawansa, S.J. (2018). Vitamin D supplementation guidelines. Journal of Steroid Biochemistry & Molecular Biology 175: 125–135.
  • Skliar, M., Curino, A., Milanesi, L., Benassati, S., Boland, R. (2000). Nicotiana glauca: another plant species containing vitamin D(3) metabolites. Plant Sci 156(2): 193-199.
  • Wacker, M., Holick, M.F. (2013). Sunlight and vitamin D: a global perspective for health, Dermatoendocrinology, 5: 51-108.
  • Wang, T., Bengtsson, G., Kärnefelt, I., Björn, L.O. (2001). Provitamins and vitamins D2 and D3 in Cladina spp. over a latitudinal gradient: possible correlation with UV levels. Journal of Photochemistry and Photobiology B: Biology, 62(1–2): 118-122.
  • Woloszynska-Read, A., Johnson, C.S., Trump, D.L. (2011). Vitamin D and cancer: Clinical aspects. Best Practice & Research Clinical Endocrinology & Metabolism, 25: 605–615.
  • Yılmaz, M., Yılmaz, N. (2013). D Vitaminin beyindeki rolü ve ilişkili nörolojik hastalıklar. Journal of Clinical and Experimental Investigations, 4(3): 411-415.
  • Yüksel, R.N., Altunsoy, N., Tikir, B., Külük, M.C., Unal, K., Goka, S., Aydemir, Ç., Goka, E. (2014). Correlation between total vitamin D levels and psychotic psychopathology in patients with schizophrenia: therapeutic implications for add-on vitamin D augmentation. Ther Adv Psychopharmacol 4(6): 268–275.
There are 47 citations in total.

Details

Primary Language Turkish
Journal Section Review Paper
Authors

Gülşah Çobanoğlu 0000-0002-3549-2872

Publication Date December 29, 2020
Acceptance Date October 25, 2020
Published in Issue Year 2020

Cite

APA Çobanoğlu, G. (2020). D Vitamininin Biyolojisi ve Doğal Kaynakları. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(Ek (Suppl.) 1), 380-391. https://doi.org/10.29048/makufebed.778498