Araştırma Makalesi
BibTex RIS Kaynak Göster

Energy and Exergy Analysis of an Organic Rankine Cycle with Internal Heat Exchanger

Yıl 2021, , 31 - 40, 23.05.2021
https://doi.org/10.29048/makufebed.816497

Öz

In this study, energy and exergy analysis of an organic Rankine cycle with internal heat exchanger using R1234yf, R1234ze and R134a is carried out. The energy and exergy performances of an ORC system for different operating temperature have been analyzed. It is seen from the analysis that, boiler, condenser and subcooling temperature has significant effect on both energy and exergy efficiencies. It was observed that energy and exergy efficiency increased with the increase of boiler and supercooling temperature, and energy and exergy efficiency decreased with the increase of condenser temperature. In addition, exergy destructions of each component were determined. Since the turbine and pump are considered isentropic, exergy destructions in these elements have been neglected. It was determined that the highest exergy destruction was in the condenser with the rate of 72% and the least exergy destruction was in the heat exchanger with the rate of 1%. As a result, it has been observed that the R1234yf fluid chosen as an alternative to the R134a working fluid is the most suitable fluid for the ORC system.

Kaynakça

  • Acar, M. S., Arslan, O. (2019). Energy and exergy analysis of solar energy-integrated, geothermal energy-powered Organic Rankine Cycle. Journal of Thermal Analysis and Calorimetry, 137(2): 659-666.
  • Aghahosseini, S., Dincer, I. (2013). Comparative performance analysis of low-temperature Organic Rankine Cycle (ORC) using pure and zeotropic working fluids. Applied Thermal Engineering, 54(1): 35-42.
  • Alvarez-Alvarado, J. M., Ríos-Moreno, G. J., Ventura-Ramos, E., Ronquillo-Lomelí, G., Trejo-Perea, M. (2019). Experimental Study of a 1-kW Organic Rankine Cycle Using R245fa Working Fluid and a Scroll Expander: A Case Study. IEEE Access, 7: 154515-154523.
  • Alvi, J. Z., Feng, Y., Wang, Q., Imran, M., Alvi, J. (2020). Modelling, simulation and comparison of phase change material storage based direct and indirect solar organic Rankine cycle systems. Applied Thermal Engineering, 170: 114780.
  • Ashouri, M., Ahmadi, M. H., Feidt, M., Astaraei, F. R. (2017). Exergy and energy analysis of a regenerative organic Rankine cycle based on flat plate solar collectors. Mechanics & Industry, 18(2): 217.
  • Bademlioğlu, AH, Canbolat, AS ve Kaynakli, O. (2020). Taguchi-Gray İlişkisel Analizi ile Organik Rankine Döngüsü performans özelliklerini etkileyen parametrelerin çok amaçlı optimizasyonu. Yenilenebilir ve Sürdürülebilir Enerji İncelemeleri, 117: 109483.
  • Carcasci, C., Cheli, L., Lubello, P., Winchler, L. (2020). Off-Design Performances of an Organic Rankine Cycle for Waste Heat Recovery from Gas Turbines. Energies, 13(5): 1105.
  • Cengel, Y. A., Boles, M. A. (2012). Thermodynamics an Engineering Approach (Fifth ed.).
  • Chen, X., Liu, C., Li, Q., Wang, X., Wang, S. (2020). Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids. Energy, 191: 116576.
  • Emadi, M. A., Chitgar, N., Oyewunmi, O. A., Markides, C. N. (2020). Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery. Applied Energy, 261: 114384.
  • Hung, T. C., Feng, Y. Q. (2019). The Development and Application of a Small-Scale Organic Rankine Cycle for Waste Heat Recovery. In ORC for Waste Heat Recovery Applications. IntechOpen.
  • Karimi, M. H., Chitgar, N., Emadi, M. A., Ahmadi, P., Rosen, M. A. (2020). Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle. International Journal of Hydrogen Energy, 45(11): 6262-6277.
  • Kavasoğulları, B., Cihan, E. (2015). Organik Rankine Çevrimi (ORC) ile Birlikte Çalışan Buhar Sıkıştırmalı Bir Soğutma Çevriminin Ekserji Analizi. Tesisat Mühendisliği, (150):74-85.
  • Köse, Ö., Koç, Y., Yağlı, H. (2020). Performance improvement of the bottoming steam Rankine cycle (SRC) and organic Rankine cycle (ORC) systems for a triple combined system using gas turbine (GT) as topping cycle. Energy Conversion and Management, 211: 112745.
  • Lin, S., Zhao, L., Deng, S., Zhao, D., Wang, W., Chen, M. (2020). Intelligent collaborative attainment of structure configuration and fluid selection for the Organic Rankine cycle. Applied Energy, 264: 114743.
  • Llopis, R., Sánchez, D., Sanz-Kock, C., Cabello, R., Torrella, E. (2015). Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: fluids and systems. Applied Energy, 138: 133-42.
  • Longo, G. A., Mancin, S., Righetti, G., Zilio, C., Brown, J. S. (2020). Assessment of the low-GWP refrigerants R600a, R1234ze (Z) and R1233zd (E) for heat pump and organic Rankine cycle applications. Applied Thermal Engineering, 167: 114804.
  • Navongxay, B., Chaiyat, N. (2019). Energy and exergy costings of organic Rankine cycle integrated with absorption system. Applied Thermal Engineering, 152: 67-78.
  • Pantaleo, A. M., Camporeale, S. M., Sorrentino, A., Miliozzi, A., Shah, N., Markides, C. N. (2020). Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas. Renewable Energy, 147: 2913-2931.
  • Quan, Y., Liu, J., Zhang, C., Wen, J., Xu, G., Dong, B. (2020). Aerodynamic design of an axial impulse turbine for the high-temperature organic Rankine cycle. Applied Thermal Engineering, 167: 114708.
  • Rad, E. A., Mohammadi, S., Tayyeban, E. (2020). Simultaneous optimization of working fluid and boiler pressure in an organic Rankine cycle for different heat source temperatures. Energy, 194: 116856.
  • Saleh, B. (2018). Energy and exergy analysis of an integrated organic Rankine cycle-vapor compression refrigeration system. Applied Thermal Engineering, 141: 697-710.
  • Song, J., Loo, P., Teo, J., Markides, C. N. (2020). Thermo-Economic Optimization of Organic Rankine Cycle (ORC) Systems for Geothermal Power Generation: A Comparative Study of System Configurations. Frontiers in Energy Research, 8: 6.
  • Sun, Q., Wang, Y., Cheng, Z., Wang, J., Zhao, P., Dai, Y. (2020). Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source. Renewable Energy, 147: 2822-2832.
  • Talluri, L., Dumont, O., Manfrida, G., Lemort, V., Fiaschi, D. (2020). Experimental investigation of an Organic Rankine Cycle Tesla turbine working with R1233zd (E). Applied Thermal Engineering, 115293.
  • Tiwari, D., Sherwani, A. F., Atheaya, D., Kumar, A., Kumar, N. (2020). Thermodynamic analysis of Organic Rankine cycle driven by reversed absorber hybrid photovoltaic thermal compound parabolic concentrator system. Renewable Energy, 147: 2118-2127.
  • Xia, X. X., Wang, Z. Q., Zhou, N. J., Hu, Y. H., Zhang, J. P., Chen, Y. (2020). Working fluid selection of dual-loop organic Rankine cycle using multi-objective optimization and improved grey relational analysis. Applied Thermal Engineering, 171: 115028.
  • Yang, M. H., Yeh, R. H. (2020). Optimum composition ratios of multicomponent mixtures of organic Rankine cycle for engine waste heat recovery. International Journal of Energy Research, 44(2): 1012-1030.

İç Isı Değiştiricili Bir Organik Rankin Çevriminin Enerji ve Ekserji Analizi

Yıl 2021, , 31 - 40, 23.05.2021
https://doi.org/10.29048/makufebed.816497

Öz

Bu çalışmada R1234yf, R1234ze ve R134a çalışma akışkanlarının kullanıldığı iç ısı değiştiricili bir Organik Rankine Çevriminin (ORC) enerji ve ekserji analizi yapılmıştır. Farklı çalışma sıcaklıkları için ORC sisteminin enerji ve ekserji performansları analiz edilmiştir. Yapılan analizden kazan, yoğuşturucu ve aşırı soğutma sıcaklıklarının hem enerji hem de ekserji verimlerini önemli derecede etkilediği görülmüştür. Kazan ve aşırı soğutma sıcaklığının artmasıyla enerji ve ekserji verimlerinin arttığı, yoğuşturucu sıcaklığının artmasıyla enerji ve ekserji verimlerinin azaldığı görülmüştür. Ayrıca her bir elemana ait ekserji yıkımları belirlenmiştir. Türbin ve pompa izentropik kabul edildiği için bu elemanlardaki ekserji yıkımları ihmal edilmiştir. En fazla ekerji yıkımının %72 oranında yoğuşturucuda, en düşük ekserji yıkımının da %1 oranında ısı değiştiricide olduğu belirlenmiştir. Sonuç olarak, R134a çalışma akışkanına alternatif olarak seçilen R1234yf akışkanının ORC sistemi için kullanılabilecek en uygun akışkan olduğu gözlemlenmiştir.

Kaynakça

  • Acar, M. S., Arslan, O. (2019). Energy and exergy analysis of solar energy-integrated, geothermal energy-powered Organic Rankine Cycle. Journal of Thermal Analysis and Calorimetry, 137(2): 659-666.
  • Aghahosseini, S., Dincer, I. (2013). Comparative performance analysis of low-temperature Organic Rankine Cycle (ORC) using pure and zeotropic working fluids. Applied Thermal Engineering, 54(1): 35-42.
  • Alvarez-Alvarado, J. M., Ríos-Moreno, G. J., Ventura-Ramos, E., Ronquillo-Lomelí, G., Trejo-Perea, M. (2019). Experimental Study of a 1-kW Organic Rankine Cycle Using R245fa Working Fluid and a Scroll Expander: A Case Study. IEEE Access, 7: 154515-154523.
  • Alvi, J. Z., Feng, Y., Wang, Q., Imran, M., Alvi, J. (2020). Modelling, simulation and comparison of phase change material storage based direct and indirect solar organic Rankine cycle systems. Applied Thermal Engineering, 170: 114780.
  • Ashouri, M., Ahmadi, M. H., Feidt, M., Astaraei, F. R. (2017). Exergy and energy analysis of a regenerative organic Rankine cycle based on flat plate solar collectors. Mechanics & Industry, 18(2): 217.
  • Bademlioğlu, AH, Canbolat, AS ve Kaynakli, O. (2020). Taguchi-Gray İlişkisel Analizi ile Organik Rankine Döngüsü performans özelliklerini etkileyen parametrelerin çok amaçlı optimizasyonu. Yenilenebilir ve Sürdürülebilir Enerji İncelemeleri, 117: 109483.
  • Carcasci, C., Cheli, L., Lubello, P., Winchler, L. (2020). Off-Design Performances of an Organic Rankine Cycle for Waste Heat Recovery from Gas Turbines. Energies, 13(5): 1105.
  • Cengel, Y. A., Boles, M. A. (2012). Thermodynamics an Engineering Approach (Fifth ed.).
  • Chen, X., Liu, C., Li, Q., Wang, X., Wang, S. (2020). Dynamic behavior of supercritical organic Rankine cycle using zeotropic mixture working fluids. Energy, 191: 116576.
  • Emadi, M. A., Chitgar, N., Oyewunmi, O. A., Markides, C. N. (2020). Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery. Applied Energy, 261: 114384.
  • Hung, T. C., Feng, Y. Q. (2019). The Development and Application of a Small-Scale Organic Rankine Cycle for Waste Heat Recovery. In ORC for Waste Heat Recovery Applications. IntechOpen.
  • Karimi, M. H., Chitgar, N., Emadi, M. A., Ahmadi, P., Rosen, M. A. (2020). Performance assessment and optimization of a biomass-based solid oxide fuel cell and micro gas turbine system integrated with an organic Rankine cycle. International Journal of Hydrogen Energy, 45(11): 6262-6277.
  • Kavasoğulları, B., Cihan, E. (2015). Organik Rankine Çevrimi (ORC) ile Birlikte Çalışan Buhar Sıkıştırmalı Bir Soğutma Çevriminin Ekserji Analizi. Tesisat Mühendisliği, (150):74-85.
  • Köse, Ö., Koç, Y., Yağlı, H. (2020). Performance improvement of the bottoming steam Rankine cycle (SRC) and organic Rankine cycle (ORC) systems for a triple combined system using gas turbine (GT) as topping cycle. Energy Conversion and Management, 211: 112745.
  • Lin, S., Zhao, L., Deng, S., Zhao, D., Wang, W., Chen, M. (2020). Intelligent collaborative attainment of structure configuration and fluid selection for the Organic Rankine cycle. Applied Energy, 264: 114743.
  • Llopis, R., Sánchez, D., Sanz-Kock, C., Cabello, R., Torrella, E. (2015). Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: fluids and systems. Applied Energy, 138: 133-42.
  • Longo, G. A., Mancin, S., Righetti, G., Zilio, C., Brown, J. S. (2020). Assessment of the low-GWP refrigerants R600a, R1234ze (Z) and R1233zd (E) for heat pump and organic Rankine cycle applications. Applied Thermal Engineering, 167: 114804.
  • Navongxay, B., Chaiyat, N. (2019). Energy and exergy costings of organic Rankine cycle integrated with absorption system. Applied Thermal Engineering, 152: 67-78.
  • Pantaleo, A. M., Camporeale, S. M., Sorrentino, A., Miliozzi, A., Shah, N., Markides, C. N. (2020). Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas. Renewable Energy, 147: 2913-2931.
  • Quan, Y., Liu, J., Zhang, C., Wen, J., Xu, G., Dong, B. (2020). Aerodynamic design of an axial impulse turbine for the high-temperature organic Rankine cycle. Applied Thermal Engineering, 167: 114708.
  • Rad, E. A., Mohammadi, S., Tayyeban, E. (2020). Simultaneous optimization of working fluid and boiler pressure in an organic Rankine cycle for different heat source temperatures. Energy, 194: 116856.
  • Saleh, B. (2018). Energy and exergy analysis of an integrated organic Rankine cycle-vapor compression refrigeration system. Applied Thermal Engineering, 141: 697-710.
  • Song, J., Loo, P., Teo, J., Markides, C. N. (2020). Thermo-Economic Optimization of Organic Rankine Cycle (ORC) Systems for Geothermal Power Generation: A Comparative Study of System Configurations. Frontiers in Energy Research, 8: 6.
  • Sun, Q., Wang, Y., Cheng, Z., Wang, J., Zhao, P., Dai, Y. (2020). Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source. Renewable Energy, 147: 2822-2832.
  • Talluri, L., Dumont, O., Manfrida, G., Lemort, V., Fiaschi, D. (2020). Experimental investigation of an Organic Rankine Cycle Tesla turbine working with R1233zd (E). Applied Thermal Engineering, 115293.
  • Tiwari, D., Sherwani, A. F., Atheaya, D., Kumar, A., Kumar, N. (2020). Thermodynamic analysis of Organic Rankine cycle driven by reversed absorber hybrid photovoltaic thermal compound parabolic concentrator system. Renewable Energy, 147: 2118-2127.
  • Xia, X. X., Wang, Z. Q., Zhou, N. J., Hu, Y. H., Zhang, J. P., Chen, Y. (2020). Working fluid selection of dual-loop organic Rankine cycle using multi-objective optimization and improved grey relational analysis. Applied Thermal Engineering, 171: 115028.
  • Yang, M. H., Yeh, R. H. (2020). Optimum composition ratios of multicomponent mixtures of organic Rankine cycle for engine waste heat recovery. International Journal of Energy Research, 44(2): 1012-1030.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Arzu Şencan Şahin 0000-0001-8519-4788

Cihanşah Ağ 0000-0002-4313-3415

Osman Özyurt Bu kişi benim 0000-0002-3275-6481

Yasin Aslan Bu kişi benim 0000-0003-0668-2121

Yayımlanma Tarihi 23 Mayıs 2021
Kabul Tarihi 2 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şencan Şahin, A., Ağ, C., Özyurt, O., Aslan, Y. (2021). İç Isı Değiştiricili Bir Organik Rankin Çevriminin Enerji ve Ekserji Analizi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(1), 31-40. https://doi.org/10.29048/makufebed.816497