Derleme
BibTex RIS Kaynak Göster

Atık Mantar Kompostunun Geleneksel ve Yeni Kullanım Alanları

Yıl 2021, , 156 - 166, 23.05.2021
https://doi.org/10.29048/makufebed.842139

Öz

Şapkalı mantar yetiştiriciliği yiyecek olarak tercih edilen bir ürün olması nedeni ile her geçen gün artmaktadır. Mantar yetiştiriciliği gıda üretiminin yanında lignoselülozik atık maddelerin biyoteknolojik geri dönüşümünün yapıldığı proseslerden biridir. Kompost içeriği mantar kültürü yapılırken değişmektedir. Lignoselülozik bileşiklerin parçalanması ve antimikrobiyal aktivitenin sağlanması için hücre dışına mantar tarafından enzimler ve kompleks bileşikler salgılanmaktadır. Çeşitli mantar kültürü çalışmaları sonucunda dünya genelinde çok fazla miktarda atık mantar kompostu açığa çıkmaktadır. Bu tür atıkların yakılarak bertaraf edilmesi çevresel açıdan ciddi sorunlara neden olmaktadır. Hasat sonrası kalan atık kompost farklı şekillerde kullanılarak değerli ürünlere dönüştürülebilir. Atık mantar kompostunun en yaygın ve geleneksel kullanım alanları; hayvan besleme, ilave katkı maddeleri ile fermentasyonu, biyogaz üretimi esnasında gübreye katılması, gübre ve toprağın iyileştirilmesidir. Son yıllarda atık mantar kompostunun değerli ürünlere çevrilmesi konusunda çalışmalar artmıştır. Yaptığımız derlemede atık mantar kompostunun geleneksel kullanım alanları yanında enzim ve antimikrobiyal madde kaynağı olarak değerlendirilmesine odaklanılmıştır.

Destekleyen Kurum

Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

0564-YL-19

Teşekkür

Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne (0564-YL-19) teşekkür ederiz.

Kaynakça

  • Ahlawat, S., Dhiman, S.S., Battan, B., Mandhan, R.P., Sharma, J. (2009). Pectinase Production by Bacillus subtilis and Its Potential Application in Biopreparation of Cotton and Micropoly Fabrica. Process Biochemistry 44: 521-526.
  • Alves, M.J., Ferreira, I.C.F.R., Dias, J., Teixeira, V., Martins, A. (2013). A Review on Antifungal Activity of Mushroom Extracts and Isolated Compounds. Current Topics in Medicinal Chemistry 13(21): 2648–2659.
  • Anke, T., Kupka, J., Schramm, G., Steglich, W. (1980). Antibiotics from Basidiomycetes. X. Scorodonin, A New Antibacterial and Antifungal Metabolite From Marasmius Scorodonius. The Journal of Antibiotics 33: 463-467.
  • Bahl, N., Gupta, M., Jauhri, K.S., (1989). The Development of High-quality Inoculants From Spent Compost. Mushroom Science 12(1): 427–431.
  • Bahl, N., Jauhri, K.S. (1986). Spent Compost as A Carrier for Bacterial Inoculant Production. In: P.J. Wuest, D.J. Royse, R.B. Beelman (Eds). Proceedings of International Symposium on Scientific and Technical Aspects of Cultivating Edible Fungi. The Pennsylvania State University, 63–68.
  • Ball, A.S., Jackson, A.M., (1995). The Recovery of Lignocellulose-degrading Enzymes From Spent Mushroom Substrate. Bioresource Technology 54(3): 311–314.
  • Barron, G.L., Thorn, R.G. (1987). Destruction of Nematodes by Species of Pleurotus, Canadian Journal Botany 64: 774–778.
  • Barros, L., Cruz, T., Baptista, P., Estevinho, L.M., Ferreira, I.C.F.R., (2008). Wild and Commercial Mushrooms As Source of Nutrients and Nutraceuticals. Food Chemistry Toxicology 46: 2742-2747.
  • Beattie, V.E., Sneddon, I.A., Walker, N., Weatherup, R.N. (2001). Environmental Enrichment of Intensive Pig Housing Using Spent Mushroom Compost. Animal Science 72: 35–42.
  • Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., Iqbal, H.M., (2019). Emerging Contaminants of High Concern and Their Enzyme-assisted Biodegradation A Review. Environment International 124: 336–353.
  • Chandra, R., Chowdhary, P., (2015). Properties of Bacterial Laccases and Their Application in Bioremediation of Industrial Wastes. Environmental Science Processess and Impacts 17: 326–342.
  • Chang, S.T., Miles, P.G., (2004). Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. CRC Press, 2. Baskı.
  • Chauhan, P.S., Goradia, B., Saxena, A., (2017). Bacterial Laccase: Recent Update on Production, Properties and Industrial Applications. Biotechnology 7: 323.
  • Chen, G.J., Peng, C.Y., Fang, J.Y., Dong, Y.Y., Zhu, X.H., Cai, H.M., (2015). Biosorption of Fluoride from Drinking Water Using Spent Mushroom Compost Biochar Coated with Aluminum Hydroxide. Desalination and Water Treatment 1–11.
  • Chi, M., Chen, Y., Wu, T., Lo, H., Lin, L., (2009). Engineering of a Truncated α-amylase of Bacillus sp. Strain TS-23 for the Simultaneous Improvement of Thermal and Oxidative Stabilities. Journal of Bioscience and Bioengineering 109(6): 531- 8.
  • Chi, Z., Chi, Z., Liu, G., Wang, F., Ju, L., Zhang, T., (2009). Saccharomycopsis fibuligera and its Applications in Biotechnology. Biotechnology Advances 27: 423-431.
  • Chiu, S.W., Gao, T., Chan, C.S.S., Ho, C.K.M., (2009). Removal of Spilled Petroleum in Industrial Soils by Spent Compost of Mushroom Pleurotus pulmonarius. Chemosphere 75: 837–842.
  • Chowdhary, P., More, A., Yadav, A., Bharagava, R.N., (2019). Ligninolytic Enzymes: An Introduction and Applications in the Food Industry. Enzymes in Food Biotechnology 181-195.
  • Christopher, L.P., Yao, B., Ji, Y., (2014). Lignin Biodegradation with Laccase-mediator Systems. Frontiers in Energy Research 2: 1-13.
  • Cobos, Á., Díaz, O., (2015). Chemical Composition of Meat and Meat Products. In: Cheung, P.C.K., Mehta, B.M. (Eds.), Handbook of Food Chemistry. Springer, Berlin Heidelberg, Berlin, Heidelberg, 471–510.
  • Cock, L. J., Taylor R. E., (1965). The Effect of TBA Residues in Compost on the Growth of Mushrooms and Subsequently on Tomatoes and Cucumbers. Plant Pathology 14: 105-108.
  • Çatal, S., Pekşen A. (2020). Physical, Chemical and Biological Properties of Spent Mushroom Substrates of Different Mushroom Species. Acta Horticulturae 59(1): 353-360.
  • Ding, R., Gong, K., (2013). Super-absorbent Resin Preparation Utilizing Spent Mushroom substrates. Journal of Applied Polymer Science 130(2): 1098–1103.
  • Donnell, L.S., Busta, F.F., (1980). Heat Resistance of Desulfotomaculum Nigrificans Spores in Soy Protein Infant Formula Preparations. Applied and Environmental Microbiology 40(4): 721–725.
  • Draelos, Z.D., (2015). A Split-face Evaluation of A Novel Pigment-lightening Agent Compared With No Treatment and Hydroquinone. Journal of the American Academy of Dermatology, 72: 105– 107.
  • Durrell, J., Sneddon, I.A., Beattie, V.E., (1997). Effects of Enrichment and Floor Type on Behaviour of Cubicle Loose-housed Dry Sows. Animal Welfare 6(4): 297– 308.
  • Edwards, C.A., Burrows, I., Fletcher, K.E., Jones, B.A., (1985). The Use of Earthworms for Composting Farm Wastes. In: JKR Gasser (Ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science Publishers: London, 229–242.
  • Gerrits, J.P.G., (1987). Compost for Mushroom Production and Its Subsequent Use for Soil Improvement. In M. de Bertoldi, M. P. Ferranti, P. L'Hermite and F. Zucconi (eds) Compost : Production, Quality and Use . Elsevier Applied Science, London 431-439.
  • Ghorai, S., Banik, S.P., Verma, D., Chowdhury, S., Mukherjee, S., Khowala, S. (2009). Fungal Biotechnology in Food and Feed Processing. Food Research International 42: 577-587. .
  • Glamoclija, J., Kosticc, M., Sokovicc, M., (2018). Antimicrobial and Hepatoprotective Activities of Edible Mushrooms. Biology of Macrofungi, 81-113.
  • Hao-bo, L., Yun-ying, G.A.O., Jin-min, L.E.I., Xin-nian, H.E., Xiao-ping, W.A.N.G., Lin- feng H., (2007). Influence of Short-Term Fattening Effects of Feeding with Waste Material from Lentinus Edodes(WMLE) on Qinshan Crossbred Steers, Journal of Henan Agricultural University, 04.
  • Hirata, Y., Nakanishi, K., (1950). Grifolin, An Antibiotic from A Basidiomycete. Journal Biological Chemistry 184: 135–144.
  • Hmidet, N., El-Hadj Ali, N., Haddar, A., Kanoun, S., Alya, S., Nasri, M. (2009). Alkaline Proteases and Thermostable α-amylase Co-produced by Bacillus licheniformis NH1: Characterization and Potential Application as Betergent Additive. Biochemical Engineering Journal 47: 71-79.
  • Hui, Z., Jianhua, L., Jianqing, D., Meiyuan, C., Yi, C. (2007). The Alternative Uses of Spent Mushroom Compost, Book Chapter; Conference Paper: Mushroom Biology and Mushroom Products. Proceedings of the Sixth International Conference on Mushroom Biology and Mushroom Products, Bonn, Germany, 48: 231-245.
  • Hussain, F., Kamal, S., Rehman, S., Azeem, M., Bibi, I., Ahmed, T., Iqbal, H.M.N., (2017). Alkaline Protease Production Using Response Surface Methodology, Characterization and Industrial Exploitation of Alkaline Protease of Bacillus subtilis sp. Catalysis Letters 147(5): 1204-1213.
  • Jerica, S., Janko, K., (2012). Microbial and Fungal Protease Inhibitors Current and Potential Applications. Microbial Biotechnology 93(4): 1351–1375.
  • Kalac, P., (2012). Chemical Composition and Nutritional Value of European Species of Wild Growing Mushrooms, In: Mushrooms: Types, Properties and Nutrition, (S. Andres and N. Baumann Ed.), Nova Science Publishers.
  • Kapu, N.U.S., Manning, M., Hurley, T.B., Voigt, J., Cosgrove, D.J., Romaine, C.P., (2012). Surfactant-assisted Pretreatment and Enzymatic Hydrolysis of Spent Mushroom Compost for the Production of Sugars. Bioresource Technology 114: 399–405.
  • Karas, P., Metsoviti, A., Zisis, V., Ehaliotis, C., Omirou, M., Papadopoulou, E.S., (2015). Dissipation, Metabolism and Sorption of Pesticides Used in Fruit‐packaging Plants: Towards An Optimized Depuration of Their Pesticide‐contaminated Agro‐industrial Effluents. Science of the Total Environment, 530–531, 129–139.
  • Karmakar, M., Ray, R.R., (2011). Current Trends in Research and Application of Microbial Cellulases. Reseach Journal Microbiology 6: 41–53.
  • Kavanagh, F., Hervey, A., Robbins, W.J., (1951). Antibiotic Substances from Basidiomycetes.8. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proceedings of the National Academy Sciences of the United States of America 37: 570–574.
  • Kirk, O., Borchert, T.V., Fuglsang, C.C., (2002). Industrial Enzyme applications. Current Opinion in Biotechnology, 13(4): 345-351.
  • Kuhad, R.C., Deswa, D., Sharma, S., Bhattacharya, A., Jain, K.K., Kaur, A., Karp, M., (2016). Revisiting Cellulase Production and Redefining Current Strategies Based on Major challenges. Renewable and Sustainable Energy Reviews 55: 249–272.
  • Kuhad, R.C., Gupta, R., Singh, A., (2011). Microbial Cellulases and Their Industrial Applications. Enzyme Research 1–10.
  • Levy, S.B., Marshall, B., (2004). Antibacterial Resistance Worldwide: Causes, Challenges and Responses. Nature Medicine 10: 122-129.
  • Li, X., Lin, X., Zhang, J., Wu, Y., Yin, R., Feng, Y., Wang, Y. (2010). Degradation of Polycyclic Aromatic Hydrocarbons by Crude Rxtracts From Spent Mushroom Substrate and Its Possible Mechanisms. Current Microbiology 60: 336–342.
  • Liang, X.W., Yao L., Liu Q. Hua, B.R.H., (2001). Ruminal Degradability of Organic Material and Cell Wall Constituent of Waste Material From Fungal Culture by Different Treatments in Nylon Bags for Cattle. Journal of Fujian Agricultural University, (Natural Science) 04.
  • Liao, C.S., Yuan, S.Y., Hung, B.H., Chang, B.V., (2012). Removal of Organic Toxic Chemicals Using the Spent Mushroom Compost of Ganoderma lucidium. Journal of Environmental Monitoring 14: 1983-1988.
  • Liming X., Xueliang S., (2004). High-yield Celllase Production by Trichoderma reesei ZU-02 On Corn Cob Residue. Bioresource Technology 91: 259-262.
  • Linyong Z., (2006). Utilization of Spent Mushroom Substrate. Acta Edulis Fungi 13(1): 76-77. Liu, X., Kokare, C., (2017). Microbial Enzymes of Use in Industry, Biotechnology of Microbial Enzymes Production. Biocatalysis and Industrial Applications 267-298.
  • Maciel, M.J.M., Silva, A.C., Ribeiro, H.C.T., (2010). Industrial and Biotechnological Applications of Ligninolytic Enzymes of the Basidiomycota: A Review. Electronic Journal Biotechnology 13 (6).
  • Maher M.J., Lenehan J.J., Staunton W.P., (1993). Spent Mushroom Compost Options for Use, Teagasc Agriculture and Food Development Authority, Kinsealy Research Centre.
  • Maher, M.J., (1988). Spent Mushroom Compost as An Organic Manure and Potting Compost Component. In W. Bidlingmaier and P. L' Hermite (eds.) Compost processes in waste management, 71-82.
  • Mandal A. (2015). Review on Microbial Xylanases and Their Applications. International Journal Life Science 4: 178–87.
  • Martirani, L., Giardina, P., Marzullo, L., Sannia, G., (1996). Reduction of Phenol Content and Toxicity in Olive Oil Mill Waste Waters with the Ligniolytic Fungus Pleurotus ostreatus. Water Research, 30(8):1914–1918.
  • Mathews, S.L., Smithson, C.E., (2016). Grunden A.M. Purification and Characterization of a Recombinant Laccase Like Multi-copper Oxidase from Paenibacillus glucanolyticus SLM1. Journal Application of Microbiology 121: 1335–1345.
  • Michelin, M., Maria de Lourdes T.M., Polizeli Denise, S., Ruzene Daniel, P., Silva José, A.T., (2014). Application of Lignocelulosic Residues in the Production of Cellulase and Hemicellulases from Fungi. Fungal Enzymes, Taylor and Francis Group, LLC, 31-64.
  • Mitidieri, S., Souza Martinelli, A.H., Schrank, A., Vainstein, M.H., (2006). Enzymatic Detergent Formulation Containing Amylase fromAspergillus niger: A Comparative Study with Commercial Detergent Formulations. Bioresource Technology 97: 1217-1224.
  • Moreira, L.R.S., Filho, E.X.F., (2016). Insights into the Mechanism of Enzymatic Hydrolysis of Xylan. Applied Microbiology and Biotechnology 100: 5205– 5214.
  • Mothana, R.A.A., Jansen, R., Julich, W.D., Lindequist, U., (2000). Ganomycins A and B, New Antimicrobial Farnesyl Hydroquinones from the Basidiomycete Ganoderma pfeifferi. Journal National Product 63: 416–418.
  • Mukherjee, A.K., Kumar, T.S, Rai, S.K., Roy, J.K., (2010). Statistical Optimization of Bacillus alcalophilus α-amylase Immobilization on Iron-oxide Magnetic Nanoparticles. Biotechnology of Bioprocess Engineering 15: 984-992.
  • Najafi, B., Ardabili, S. F., Shamshirband, S., Chau, K.W. (2019). Spent Mushroom Compost (SMC) as a Source for Biogas Production in Iran. Engineering Applications of Computational Fluid Mechanics 13(1): 967-982.
  • Osma, J.F., Toca-Herrera, J.L., Rodriguez-Couto, S. (2010). Uses of Laccases in the Food Industry. Enzyme Research, 918761, 1-8.
  • Palomba, R., Formisano, G., Arrichiello, A., Auriemma, G., Sarubbi, F., (2017). Development of a Laboratory Technique for the Evaluation of Protease Enzymes Activity in Goat and Sheep Milk. Food Chemistry 221: 1637–1641.
  • Park, S.H., Na, Y., Kim, J., Kang, S.D., Park, K.H., (2018). Properties and Applications of Starch Modifying Enzymes for Use in the Baking Industry. Food Science and Biotechnology 27: 299–312.
  • Phan, C.W., Sabaratnam, V., (2012). Potential Uses of Spent Mushroom Substrate and Its Associated Lignocellulosic Enzymes. Applied Microbiology and Biotechnology 96(4): 863–873.
  • Pouliot, A., (2018). The Allure of Fungi. CSIRO Publishing, Clayton South, VIC, Australia Prakash, O., Jaiswal, N., (2010). α -Amylase: An Ideal Representative of Thermostable Enzymes. Applied Biochemistry and Biotechnology 160: 2401–2414.
  • Pundir, C.S., (2015). Enzyme Nanoparticles Preparation, Characterisation, Properties and Applications, Micro-Nano Technologies Series, ELSEVIER.
  • Raveendran S., Parameswaran, B., Ummalyma, S.B, Abraham, A., Mathew, A.K., Madhavan, A., Pandey, S.R.A., (2018). Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology 56(1): 16-36.
  • Rinker, D. L., (2017). Spent Mushroom Substrate Uses, Edible and Medicinal Mushrooms. Technology and Applications, First Edition, Edited by Diego Cunha Zied and Arturo Pardo-Giménez, 427-453.
  • Russell, M., Basheer, P.A.M., Rao, J.R., (2005). Potential Use of Spent Mushroom Compost Ash as An Activator for Pulverised Fuel Ash. Construction and Building Materials 19: 698–702.
  • Saini, R., Saini, H. S., Dahiya, A. (2017). Amylases: Characteristics and Industrial Applications. Journal of Pharmacognosy and Phytochemistry 6(4): 1865-1871.
  • Salinas, V.A., De La Rosa M.J., Sena S.S.O., Chuck H.C. (2015). Yield and Textural Character Istics of Panela Cheeses Hroduced with Dairy- Vegetable Trotein (Soybean or Peanut) Blends Supplemented with Transglutaminase. Journal of Food Science 80 (12): 2950–2956.
  • Santini, A., Tenore, G.C., Novellino, E. (2017). Nutraceuticals: A Paradigm of Proactive Medicine. European Journal of Pharmaceutical Sciences 96: 53–61.
  • Satya, J.E., Swasti, D., (2019). Evolutionary Trends in Industrial Production of α-amylase. Recent Patents on Biotechnology 13(1): 4-18(15).
  • Saxena, A., Chauhan, P.S., (2016). Role of Various Enzymes in einking of Paper: A Review. Critical Reviews Biotechnology 15: 1–15.
  • Shah, A., Patel, H., Narra, M., (2017). Bioproduction of Fungal Cellulases and Hemicellulases Through Solid State Fermentation. Fungal Metabolites 349– 393.
  • Shenggang, X., (2005). Test of Soil Amendment of Orange Garden with Spent Mushroom Substrate. Edible Fungi 6:48.
  • Shuman, L.M., (1998). Effect of Organic Waste Amendments on Cadmium and Lead in Soil Fractions of Two Soils. Communications in Soil Science and Plant Analysis 29(19–20): 2939–2952.
  • Silva, T.M., (2014). Fungal Amylases, Applications and Functional Properties, CRC Press Group ISBN:9780429074202
  • Singh, D., Gupta N., (2020). Microbial Laccase: A Robust Enzyme and Its Industrial Applications. Biologia 75: 1183–1193.
  • Singh, D., Sharma, K.K., Jacob, S., Gakhar, S.K., (2014). Molecular Docking of Laccase Trotein from Bacillus safensis DSKK5 Isolated from Earthworm Gut: A Novel Method to Study Dye Decolorization Potential. Water Air Soil Pollution 225: 2175, 1-12.
  • Soccol, C.R., Scopel, E., Alberto, L., Letti, J., Karp, S.G., Woiciechowski, A.L., Vandenberghe, D.S. (2017). Recent Devel Opments and Innovations in Solid State Fermentation. Biotechnology Research Innovation 1: 52–71.
  • Sondhi, S., Sharma, P., George, N., Chauhan, P.S., Puri, N., Gupta, N., (2015). An Extracellular Thermo-Alkali-Stable Laccase from Bacillus tequilensis SN4, with a Potential to Biobleach Softwood Pul,. 3 Biotechnology 5: 175–185.
  • Songlin, Z., (2002). Production of Biogas with SMC. Edible Fungi 01:6.
  • Spiteller, P., (2008). Chemical Defense Strategies of Higher Fungi. Chemistry Europe Journal 14: 9100-9110.
  • Sulistiany, H., Sudirman, L.I., Dharmaputra, O.S., (2016). Production of Fruiting Body and Antioxidant Activity of Wild Pleurotus. Journal of Bioscience 23: 191-195.
  • Sundarram, A., Murthy T. P. K., (2014). α-Amylase Production and Applications: A Review. Journal of Applied and Environmental Microbiology 2(4): 166-175.
  • Synytsya, A., Mickova, K., Synytsya, A., Jablonsky, I., Spevacek, J., Erban, V., Kovarikova, E., Copikova, J., (2009). Glucans from Fruit Bodies of Cultivates Mushrooms Pleurotus ostreatus and Pleurotus eryngii Structure and Potential Prebiotic Activity. Carbohydrate Polymers 76: 548-556.
  • Tajbakhsh, J., Abdoli, M.A., Mohammadi, G.E., Alahdadi, I., Malakouti, M.J., (2008). Recycling of Spent Mushroom Compost Using Earthworms Eisenia foetida and Eisenia andrei. Environmentalist 28: 476–482.
  • Tajkarimi, M., Ibrahim, S., Cliver, D., (2010). Antimicrobial Herb and Spice Compounds in Food. Food Control 21(9): 1199-1218.
  • Tan, Y.H., Wahab, M.N., (1997). Extracellular Enzyme Production During Anamorphic Growth in the Edible Mushroom Pleurotus sajor-caju. World Journal of Microbiology and Biotechnology 13: 613–617.
  • Tumwasorn, S., Chinoros, C., Easpiakdumrong, P., Pattanasettakul W., (1980). Effects of Different Rice Straws and Dilution Rates of Manures on Biogas Production. Mushroom Newsletter for the Tropics 1(2): 6–10.
  • Urbaniec, K., Bakker, R.R., (2015). Biomass Residues as Raw Material for Dark Hydrogen Fermentation A Review. International Journal of Hydrogen Energy 40: 3648–3658.
  • Velioglu, Z., Ozturk, U.R., (2015). Biosurfactant Production by Pleurotus ostreatus in Submerged and Solid-state Fermentation Systems. Turkish Journal Biology 39: 160–166.
  • Vigneshwaran, N., Kathe, A.A., Varadarajan, P.V., Nachane, R.P., Balasubramanya, R.H., (2007). Silver- protein (core-shell) Nanoparticle Production Using Spent Mushroom Substrate. Langmuir 23: 7113–7117.
  • Vrsanska, M., Buresova, A., Damborsky, P., Adam, V., (2015). Influence of Different Inducers on Ligninolytic Enzyme Activities. Journal of Metallomics and Nanotechnologies 3: 64-70.
  • Wang, T.N., Zhao, M., (2016). A Simple trategy for Extracellular Production of CotA Laccase in Escherichia coli and Becolorization of Simulated Textile Effluent by Recombinant Laccase. Applied Microbiology and Biotechnology 101(2): 685-696.
  • Wolff, E.R.S., Wisbeck, E., Silveira, M.L.L., Gern, R.M.M., Pinho, M.S.L., Furlan, S.A. (2008). Antimicrobial and Antineoplasic Activity of Pleurotus ostreatus. Applied Biochemistry Biotechnology, 151: 402–412.
  • Wu, S., Lan, Y., Huang, D., Peng, Y., Huang, Z., Xu, L. (2014). Use of Spent Mushroom Substrate for Production of Bacillus thuringiensis by Solid State Fermentation. Journal of Economic Entomology 107(1): 137–143.
  • Wu, S., Lan, Y., Wu, Z., Peng, Y., Chen, S., Huang, Z. (2013). Pretreatment of Spent Mushroom Substrate for Enhancing the Conversion of Fermentable Sugar. Bioresource Technology 148: 596–600.
  • Wuest, P. J., Fahy, H.K., (1991). Spent Mushroom Compost, Traits and Uses. Mushroom News, 39(12): 9-15.
  • Yamaç, M., Pekşen, A. (2016). Atık Mantar Kompostu/Substratının Kullanım Alanları-2: Lignoselülozik Enzim Ekstraksiyonu (Using Areas of Spent Mushroom Compost/Substrate-2: Extraction of Lignocellulosic Enzymes). Mantar Dergisi, 7(1): 66-77.
  • Zahid, S., Udenigwe, C.C., Ata, A., Eze, M.O., Segstro, E.P., Holloway, P., (2006). New Bioactive Natural Products from Coprinus micaceus. Natural Product Research, 20: 1283–1289.
  • Zarei, M., Forghani, B., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., Saari, N., (2015). In Vitro and in Vivo Antihy-pertensive Activity of Palm Kernel Cake Protein Hydrolysates: Sequencing and Characterization of Potent Bioactive Peptides. Industrial Crops and Products 76: 112–120.
  • Zhengfeng, L. (1997). Edible Fungus Residue Can be Used to Produce Plant Hormones. Edible Fungi of China 16(4): 19.

Traditional and Alternative Use of Mushroom Compost Waste

Yıl 2021, , 156 - 166, 23.05.2021
https://doi.org/10.29048/makufebed.842139

Öz

The production and culture of mushrooms is increasing as a desirable addition to the cuisine since ancient times. Mushroom culture is a biotechnological process that recycles ligninocellulosic wastes, since mushrooms are food for human consumption. Mushroom compost changes during cultivation as a result of fungal activity. Extracellular enzymes and complex compounds are secreted for degredation of ligninocellulosic substrates and antimicrobial activity. A large amount of compost waste is produced worldwide in various mushroom cultivation. The disposal and burning of agricultural wastes have created major global environmental problems. This post harvest compost waste can be used in different ways for produce value-added products. The most common and traditional uses of this waste material is in animal feeding, fermentation with other additives, mixed with other manure to produce biogas, bottom fertilizer and soil improvement. Recently efforts on conversion of mushroom compost waste into valuable products have increased. This review has focused on the use of mushroom compost waste in traditional methods and as a source for production of extracelluler enzymes and antimicrobial compounds.

Proje Numarası

0564-YL-19

Kaynakça

  • Ahlawat, S., Dhiman, S.S., Battan, B., Mandhan, R.P., Sharma, J. (2009). Pectinase Production by Bacillus subtilis and Its Potential Application in Biopreparation of Cotton and Micropoly Fabrica. Process Biochemistry 44: 521-526.
  • Alves, M.J., Ferreira, I.C.F.R., Dias, J., Teixeira, V., Martins, A. (2013). A Review on Antifungal Activity of Mushroom Extracts and Isolated Compounds. Current Topics in Medicinal Chemistry 13(21): 2648–2659.
  • Anke, T., Kupka, J., Schramm, G., Steglich, W. (1980). Antibiotics from Basidiomycetes. X. Scorodonin, A New Antibacterial and Antifungal Metabolite From Marasmius Scorodonius. The Journal of Antibiotics 33: 463-467.
  • Bahl, N., Gupta, M., Jauhri, K.S., (1989). The Development of High-quality Inoculants From Spent Compost. Mushroom Science 12(1): 427–431.
  • Bahl, N., Jauhri, K.S. (1986). Spent Compost as A Carrier for Bacterial Inoculant Production. In: P.J. Wuest, D.J. Royse, R.B. Beelman (Eds). Proceedings of International Symposium on Scientific and Technical Aspects of Cultivating Edible Fungi. The Pennsylvania State University, 63–68.
  • Ball, A.S., Jackson, A.M., (1995). The Recovery of Lignocellulose-degrading Enzymes From Spent Mushroom Substrate. Bioresource Technology 54(3): 311–314.
  • Barron, G.L., Thorn, R.G. (1987). Destruction of Nematodes by Species of Pleurotus, Canadian Journal Botany 64: 774–778.
  • Barros, L., Cruz, T., Baptista, P., Estevinho, L.M., Ferreira, I.C.F.R., (2008). Wild and Commercial Mushrooms As Source of Nutrients and Nutraceuticals. Food Chemistry Toxicology 46: 2742-2747.
  • Beattie, V.E., Sneddon, I.A., Walker, N., Weatherup, R.N. (2001). Environmental Enrichment of Intensive Pig Housing Using Spent Mushroom Compost. Animal Science 72: 35–42.
  • Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., Iqbal, H.M., (2019). Emerging Contaminants of High Concern and Their Enzyme-assisted Biodegradation A Review. Environment International 124: 336–353.
  • Chandra, R., Chowdhary, P., (2015). Properties of Bacterial Laccases and Their Application in Bioremediation of Industrial Wastes. Environmental Science Processess and Impacts 17: 326–342.
  • Chang, S.T., Miles, P.G., (2004). Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. CRC Press, 2. Baskı.
  • Chauhan, P.S., Goradia, B., Saxena, A., (2017). Bacterial Laccase: Recent Update on Production, Properties and Industrial Applications. Biotechnology 7: 323.
  • Chen, G.J., Peng, C.Y., Fang, J.Y., Dong, Y.Y., Zhu, X.H., Cai, H.M., (2015). Biosorption of Fluoride from Drinking Water Using Spent Mushroom Compost Biochar Coated with Aluminum Hydroxide. Desalination and Water Treatment 1–11.
  • Chi, M., Chen, Y., Wu, T., Lo, H., Lin, L., (2009). Engineering of a Truncated α-amylase of Bacillus sp. Strain TS-23 for the Simultaneous Improvement of Thermal and Oxidative Stabilities. Journal of Bioscience and Bioengineering 109(6): 531- 8.
  • Chi, Z., Chi, Z., Liu, G., Wang, F., Ju, L., Zhang, T., (2009). Saccharomycopsis fibuligera and its Applications in Biotechnology. Biotechnology Advances 27: 423-431.
  • Chiu, S.W., Gao, T., Chan, C.S.S., Ho, C.K.M., (2009). Removal of Spilled Petroleum in Industrial Soils by Spent Compost of Mushroom Pleurotus pulmonarius. Chemosphere 75: 837–842.
  • Chowdhary, P., More, A., Yadav, A., Bharagava, R.N., (2019). Ligninolytic Enzymes: An Introduction and Applications in the Food Industry. Enzymes in Food Biotechnology 181-195.
  • Christopher, L.P., Yao, B., Ji, Y., (2014). Lignin Biodegradation with Laccase-mediator Systems. Frontiers in Energy Research 2: 1-13.
  • Cobos, Á., Díaz, O., (2015). Chemical Composition of Meat and Meat Products. In: Cheung, P.C.K., Mehta, B.M. (Eds.), Handbook of Food Chemistry. Springer, Berlin Heidelberg, Berlin, Heidelberg, 471–510.
  • Cock, L. J., Taylor R. E., (1965). The Effect of TBA Residues in Compost on the Growth of Mushrooms and Subsequently on Tomatoes and Cucumbers. Plant Pathology 14: 105-108.
  • Çatal, S., Pekşen A. (2020). Physical, Chemical and Biological Properties of Spent Mushroom Substrates of Different Mushroom Species. Acta Horticulturae 59(1): 353-360.
  • Ding, R., Gong, K., (2013). Super-absorbent Resin Preparation Utilizing Spent Mushroom substrates. Journal of Applied Polymer Science 130(2): 1098–1103.
  • Donnell, L.S., Busta, F.F., (1980). Heat Resistance of Desulfotomaculum Nigrificans Spores in Soy Protein Infant Formula Preparations. Applied and Environmental Microbiology 40(4): 721–725.
  • Draelos, Z.D., (2015). A Split-face Evaluation of A Novel Pigment-lightening Agent Compared With No Treatment and Hydroquinone. Journal of the American Academy of Dermatology, 72: 105– 107.
  • Durrell, J., Sneddon, I.A., Beattie, V.E., (1997). Effects of Enrichment and Floor Type on Behaviour of Cubicle Loose-housed Dry Sows. Animal Welfare 6(4): 297– 308.
  • Edwards, C.A., Burrows, I., Fletcher, K.E., Jones, B.A., (1985). The Use of Earthworms for Composting Farm Wastes. In: JKR Gasser (Ed.), Composting of Agricultural and Other Wastes. Elsevier Applied Science Publishers: London, 229–242.
  • Gerrits, J.P.G., (1987). Compost for Mushroom Production and Its Subsequent Use for Soil Improvement. In M. de Bertoldi, M. P. Ferranti, P. L'Hermite and F. Zucconi (eds) Compost : Production, Quality and Use . Elsevier Applied Science, London 431-439.
  • Ghorai, S., Banik, S.P., Verma, D., Chowdhury, S., Mukherjee, S., Khowala, S. (2009). Fungal Biotechnology in Food and Feed Processing. Food Research International 42: 577-587. .
  • Glamoclija, J., Kosticc, M., Sokovicc, M., (2018). Antimicrobial and Hepatoprotective Activities of Edible Mushrooms. Biology of Macrofungi, 81-113.
  • Hao-bo, L., Yun-ying, G.A.O., Jin-min, L.E.I., Xin-nian, H.E., Xiao-ping, W.A.N.G., Lin- feng H., (2007). Influence of Short-Term Fattening Effects of Feeding with Waste Material from Lentinus Edodes(WMLE) on Qinshan Crossbred Steers, Journal of Henan Agricultural University, 04.
  • Hirata, Y., Nakanishi, K., (1950). Grifolin, An Antibiotic from A Basidiomycete. Journal Biological Chemistry 184: 135–144.
  • Hmidet, N., El-Hadj Ali, N., Haddar, A., Kanoun, S., Alya, S., Nasri, M. (2009). Alkaline Proteases and Thermostable α-amylase Co-produced by Bacillus licheniformis NH1: Characterization and Potential Application as Betergent Additive. Biochemical Engineering Journal 47: 71-79.
  • Hui, Z., Jianhua, L., Jianqing, D., Meiyuan, C., Yi, C. (2007). The Alternative Uses of Spent Mushroom Compost, Book Chapter; Conference Paper: Mushroom Biology and Mushroom Products. Proceedings of the Sixth International Conference on Mushroom Biology and Mushroom Products, Bonn, Germany, 48: 231-245.
  • Hussain, F., Kamal, S., Rehman, S., Azeem, M., Bibi, I., Ahmed, T., Iqbal, H.M.N., (2017). Alkaline Protease Production Using Response Surface Methodology, Characterization and Industrial Exploitation of Alkaline Protease of Bacillus subtilis sp. Catalysis Letters 147(5): 1204-1213.
  • Jerica, S., Janko, K., (2012). Microbial and Fungal Protease Inhibitors Current and Potential Applications. Microbial Biotechnology 93(4): 1351–1375.
  • Kalac, P., (2012). Chemical Composition and Nutritional Value of European Species of Wild Growing Mushrooms, In: Mushrooms: Types, Properties and Nutrition, (S. Andres and N. Baumann Ed.), Nova Science Publishers.
  • Kapu, N.U.S., Manning, M., Hurley, T.B., Voigt, J., Cosgrove, D.J., Romaine, C.P., (2012). Surfactant-assisted Pretreatment and Enzymatic Hydrolysis of Spent Mushroom Compost for the Production of Sugars. Bioresource Technology 114: 399–405.
  • Karas, P., Metsoviti, A., Zisis, V., Ehaliotis, C., Omirou, M., Papadopoulou, E.S., (2015). Dissipation, Metabolism and Sorption of Pesticides Used in Fruit‐packaging Plants: Towards An Optimized Depuration of Their Pesticide‐contaminated Agro‐industrial Effluents. Science of the Total Environment, 530–531, 129–139.
  • Karmakar, M., Ray, R.R., (2011). Current Trends in Research and Application of Microbial Cellulases. Reseach Journal Microbiology 6: 41–53.
  • Kavanagh, F., Hervey, A., Robbins, W.J., (1951). Antibiotic Substances from Basidiomycetes.8. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proceedings of the National Academy Sciences of the United States of America 37: 570–574.
  • Kirk, O., Borchert, T.V., Fuglsang, C.C., (2002). Industrial Enzyme applications. Current Opinion in Biotechnology, 13(4): 345-351.
  • Kuhad, R.C., Deswa, D., Sharma, S., Bhattacharya, A., Jain, K.K., Kaur, A., Karp, M., (2016). Revisiting Cellulase Production and Redefining Current Strategies Based on Major challenges. Renewable and Sustainable Energy Reviews 55: 249–272.
  • Kuhad, R.C., Gupta, R., Singh, A., (2011). Microbial Cellulases and Their Industrial Applications. Enzyme Research 1–10.
  • Levy, S.B., Marshall, B., (2004). Antibacterial Resistance Worldwide: Causes, Challenges and Responses. Nature Medicine 10: 122-129.
  • Li, X., Lin, X., Zhang, J., Wu, Y., Yin, R., Feng, Y., Wang, Y. (2010). Degradation of Polycyclic Aromatic Hydrocarbons by Crude Rxtracts From Spent Mushroom Substrate and Its Possible Mechanisms. Current Microbiology 60: 336–342.
  • Liang, X.W., Yao L., Liu Q. Hua, B.R.H., (2001). Ruminal Degradability of Organic Material and Cell Wall Constituent of Waste Material From Fungal Culture by Different Treatments in Nylon Bags for Cattle. Journal of Fujian Agricultural University, (Natural Science) 04.
  • Liao, C.S., Yuan, S.Y., Hung, B.H., Chang, B.V., (2012). Removal of Organic Toxic Chemicals Using the Spent Mushroom Compost of Ganoderma lucidium. Journal of Environmental Monitoring 14: 1983-1988.
  • Liming X., Xueliang S., (2004). High-yield Celllase Production by Trichoderma reesei ZU-02 On Corn Cob Residue. Bioresource Technology 91: 259-262.
  • Linyong Z., (2006). Utilization of Spent Mushroom Substrate. Acta Edulis Fungi 13(1): 76-77. Liu, X., Kokare, C., (2017). Microbial Enzymes of Use in Industry, Biotechnology of Microbial Enzymes Production. Biocatalysis and Industrial Applications 267-298.
  • Maciel, M.J.M., Silva, A.C., Ribeiro, H.C.T., (2010). Industrial and Biotechnological Applications of Ligninolytic Enzymes of the Basidiomycota: A Review. Electronic Journal Biotechnology 13 (6).
  • Maher M.J., Lenehan J.J., Staunton W.P., (1993). Spent Mushroom Compost Options for Use, Teagasc Agriculture and Food Development Authority, Kinsealy Research Centre.
  • Maher, M.J., (1988). Spent Mushroom Compost as An Organic Manure and Potting Compost Component. In W. Bidlingmaier and P. L' Hermite (eds.) Compost processes in waste management, 71-82.
  • Mandal A. (2015). Review on Microbial Xylanases and Their Applications. International Journal Life Science 4: 178–87.
  • Martirani, L., Giardina, P., Marzullo, L., Sannia, G., (1996). Reduction of Phenol Content and Toxicity in Olive Oil Mill Waste Waters with the Ligniolytic Fungus Pleurotus ostreatus. Water Research, 30(8):1914–1918.
  • Mathews, S.L., Smithson, C.E., (2016). Grunden A.M. Purification and Characterization of a Recombinant Laccase Like Multi-copper Oxidase from Paenibacillus glucanolyticus SLM1. Journal Application of Microbiology 121: 1335–1345.
  • Michelin, M., Maria de Lourdes T.M., Polizeli Denise, S., Ruzene Daniel, P., Silva José, A.T., (2014). Application of Lignocelulosic Residues in the Production of Cellulase and Hemicellulases from Fungi. Fungal Enzymes, Taylor and Francis Group, LLC, 31-64.
  • Mitidieri, S., Souza Martinelli, A.H., Schrank, A., Vainstein, M.H., (2006). Enzymatic Detergent Formulation Containing Amylase fromAspergillus niger: A Comparative Study with Commercial Detergent Formulations. Bioresource Technology 97: 1217-1224.
  • Moreira, L.R.S., Filho, E.X.F., (2016). Insights into the Mechanism of Enzymatic Hydrolysis of Xylan. Applied Microbiology and Biotechnology 100: 5205– 5214.
  • Mothana, R.A.A., Jansen, R., Julich, W.D., Lindequist, U., (2000). Ganomycins A and B, New Antimicrobial Farnesyl Hydroquinones from the Basidiomycete Ganoderma pfeifferi. Journal National Product 63: 416–418.
  • Mukherjee, A.K., Kumar, T.S, Rai, S.K., Roy, J.K., (2010). Statistical Optimization of Bacillus alcalophilus α-amylase Immobilization on Iron-oxide Magnetic Nanoparticles. Biotechnology of Bioprocess Engineering 15: 984-992.
  • Najafi, B., Ardabili, S. F., Shamshirband, S., Chau, K.W. (2019). Spent Mushroom Compost (SMC) as a Source for Biogas Production in Iran. Engineering Applications of Computational Fluid Mechanics 13(1): 967-982.
  • Osma, J.F., Toca-Herrera, J.L., Rodriguez-Couto, S. (2010). Uses of Laccases in the Food Industry. Enzyme Research, 918761, 1-8.
  • Palomba, R., Formisano, G., Arrichiello, A., Auriemma, G., Sarubbi, F., (2017). Development of a Laboratory Technique for the Evaluation of Protease Enzymes Activity in Goat and Sheep Milk. Food Chemistry 221: 1637–1641.
  • Park, S.H., Na, Y., Kim, J., Kang, S.D., Park, K.H., (2018). Properties and Applications of Starch Modifying Enzymes for Use in the Baking Industry. Food Science and Biotechnology 27: 299–312.
  • Phan, C.W., Sabaratnam, V., (2012). Potential Uses of Spent Mushroom Substrate and Its Associated Lignocellulosic Enzymes. Applied Microbiology and Biotechnology 96(4): 863–873.
  • Pouliot, A., (2018). The Allure of Fungi. CSIRO Publishing, Clayton South, VIC, Australia Prakash, O., Jaiswal, N., (2010). α -Amylase: An Ideal Representative of Thermostable Enzymes. Applied Biochemistry and Biotechnology 160: 2401–2414.
  • Pundir, C.S., (2015). Enzyme Nanoparticles Preparation, Characterisation, Properties and Applications, Micro-Nano Technologies Series, ELSEVIER.
  • Raveendran S., Parameswaran, B., Ummalyma, S.B, Abraham, A., Mathew, A.K., Madhavan, A., Pandey, S.R.A., (2018). Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology 56(1): 16-36.
  • Rinker, D. L., (2017). Spent Mushroom Substrate Uses, Edible and Medicinal Mushrooms. Technology and Applications, First Edition, Edited by Diego Cunha Zied and Arturo Pardo-Giménez, 427-453.
  • Russell, M., Basheer, P.A.M., Rao, J.R., (2005). Potential Use of Spent Mushroom Compost Ash as An Activator for Pulverised Fuel Ash. Construction and Building Materials 19: 698–702.
  • Saini, R., Saini, H. S., Dahiya, A. (2017). Amylases: Characteristics and Industrial Applications. Journal of Pharmacognosy and Phytochemistry 6(4): 1865-1871.
  • Salinas, V.A., De La Rosa M.J., Sena S.S.O., Chuck H.C. (2015). Yield and Textural Character Istics of Panela Cheeses Hroduced with Dairy- Vegetable Trotein (Soybean or Peanut) Blends Supplemented with Transglutaminase. Journal of Food Science 80 (12): 2950–2956.
  • Santini, A., Tenore, G.C., Novellino, E. (2017). Nutraceuticals: A Paradigm of Proactive Medicine. European Journal of Pharmaceutical Sciences 96: 53–61.
  • Satya, J.E., Swasti, D., (2019). Evolutionary Trends in Industrial Production of α-amylase. Recent Patents on Biotechnology 13(1): 4-18(15).
  • Saxena, A., Chauhan, P.S., (2016). Role of Various Enzymes in einking of Paper: A Review. Critical Reviews Biotechnology 15: 1–15.
  • Shah, A., Patel, H., Narra, M., (2017). Bioproduction of Fungal Cellulases and Hemicellulases Through Solid State Fermentation. Fungal Metabolites 349– 393.
  • Shenggang, X., (2005). Test of Soil Amendment of Orange Garden with Spent Mushroom Substrate. Edible Fungi 6:48.
  • Shuman, L.M., (1998). Effect of Organic Waste Amendments on Cadmium and Lead in Soil Fractions of Two Soils. Communications in Soil Science and Plant Analysis 29(19–20): 2939–2952.
  • Silva, T.M., (2014). Fungal Amylases, Applications and Functional Properties, CRC Press Group ISBN:9780429074202
  • Singh, D., Gupta N., (2020). Microbial Laccase: A Robust Enzyme and Its Industrial Applications. Biologia 75: 1183–1193.
  • Singh, D., Sharma, K.K., Jacob, S., Gakhar, S.K., (2014). Molecular Docking of Laccase Trotein from Bacillus safensis DSKK5 Isolated from Earthworm Gut: A Novel Method to Study Dye Decolorization Potential. Water Air Soil Pollution 225: 2175, 1-12.
  • Soccol, C.R., Scopel, E., Alberto, L., Letti, J., Karp, S.G., Woiciechowski, A.L., Vandenberghe, D.S. (2017). Recent Devel Opments and Innovations in Solid State Fermentation. Biotechnology Research Innovation 1: 52–71.
  • Sondhi, S., Sharma, P., George, N., Chauhan, P.S., Puri, N., Gupta, N., (2015). An Extracellular Thermo-Alkali-Stable Laccase from Bacillus tequilensis SN4, with a Potential to Biobleach Softwood Pul,. 3 Biotechnology 5: 175–185.
  • Songlin, Z., (2002). Production of Biogas with SMC. Edible Fungi 01:6.
  • Spiteller, P., (2008). Chemical Defense Strategies of Higher Fungi. Chemistry Europe Journal 14: 9100-9110.
  • Sulistiany, H., Sudirman, L.I., Dharmaputra, O.S., (2016). Production of Fruiting Body and Antioxidant Activity of Wild Pleurotus. Journal of Bioscience 23: 191-195.
  • Sundarram, A., Murthy T. P. K., (2014). α-Amylase Production and Applications: A Review. Journal of Applied and Environmental Microbiology 2(4): 166-175.
  • Synytsya, A., Mickova, K., Synytsya, A., Jablonsky, I., Spevacek, J., Erban, V., Kovarikova, E., Copikova, J., (2009). Glucans from Fruit Bodies of Cultivates Mushrooms Pleurotus ostreatus and Pleurotus eryngii Structure and Potential Prebiotic Activity. Carbohydrate Polymers 76: 548-556.
  • Tajbakhsh, J., Abdoli, M.A., Mohammadi, G.E., Alahdadi, I., Malakouti, M.J., (2008). Recycling of Spent Mushroom Compost Using Earthworms Eisenia foetida and Eisenia andrei. Environmentalist 28: 476–482.
  • Tajkarimi, M., Ibrahim, S., Cliver, D., (2010). Antimicrobial Herb and Spice Compounds in Food. Food Control 21(9): 1199-1218.
  • Tan, Y.H., Wahab, M.N., (1997). Extracellular Enzyme Production During Anamorphic Growth in the Edible Mushroom Pleurotus sajor-caju. World Journal of Microbiology and Biotechnology 13: 613–617.
  • Tumwasorn, S., Chinoros, C., Easpiakdumrong, P., Pattanasettakul W., (1980). Effects of Different Rice Straws and Dilution Rates of Manures on Biogas Production. Mushroom Newsletter for the Tropics 1(2): 6–10.
  • Urbaniec, K., Bakker, R.R., (2015). Biomass Residues as Raw Material for Dark Hydrogen Fermentation A Review. International Journal of Hydrogen Energy 40: 3648–3658.
  • Velioglu, Z., Ozturk, U.R., (2015). Biosurfactant Production by Pleurotus ostreatus in Submerged and Solid-state Fermentation Systems. Turkish Journal Biology 39: 160–166.
  • Vigneshwaran, N., Kathe, A.A., Varadarajan, P.V., Nachane, R.P., Balasubramanya, R.H., (2007). Silver- protein (core-shell) Nanoparticle Production Using Spent Mushroom Substrate. Langmuir 23: 7113–7117.
  • Vrsanska, M., Buresova, A., Damborsky, P., Adam, V., (2015). Influence of Different Inducers on Ligninolytic Enzyme Activities. Journal of Metallomics and Nanotechnologies 3: 64-70.
  • Wang, T.N., Zhao, M., (2016). A Simple trategy for Extracellular Production of CotA Laccase in Escherichia coli and Becolorization of Simulated Textile Effluent by Recombinant Laccase. Applied Microbiology and Biotechnology 101(2): 685-696.
  • Wolff, E.R.S., Wisbeck, E., Silveira, M.L.L., Gern, R.M.M., Pinho, M.S.L., Furlan, S.A. (2008). Antimicrobial and Antineoplasic Activity of Pleurotus ostreatus. Applied Biochemistry Biotechnology, 151: 402–412.
  • Wu, S., Lan, Y., Huang, D., Peng, Y., Huang, Z., Xu, L. (2014). Use of Spent Mushroom Substrate for Production of Bacillus thuringiensis by Solid State Fermentation. Journal of Economic Entomology 107(1): 137–143.
  • Wu, S., Lan, Y., Wu, Z., Peng, Y., Chen, S., Huang, Z. (2013). Pretreatment of Spent Mushroom Substrate for Enhancing the Conversion of Fermentable Sugar. Bioresource Technology 148: 596–600.
  • Wuest, P. J., Fahy, H.K., (1991). Spent Mushroom Compost, Traits and Uses. Mushroom News, 39(12): 9-15.
  • Yamaç, M., Pekşen, A. (2016). Atık Mantar Kompostu/Substratının Kullanım Alanları-2: Lignoselülozik Enzim Ekstraksiyonu (Using Areas of Spent Mushroom Compost/Substrate-2: Extraction of Lignocellulosic Enzymes). Mantar Dergisi, 7(1): 66-77.
  • Zahid, S., Udenigwe, C.C., Ata, A., Eze, M.O., Segstro, E.P., Holloway, P., (2006). New Bioactive Natural Products from Coprinus micaceus. Natural Product Research, 20: 1283–1289.
  • Zarei, M., Forghani, B., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., Saari, N., (2015). In Vitro and in Vivo Antihy-pertensive Activity of Palm Kernel Cake Protein Hydrolysates: Sequencing and Characterization of Potent Bioactive Peptides. Industrial Crops and Products 76: 112–120.
  • Zhengfeng, L. (1997). Edible Fungus Residue Can be Used to Produce Plant Hormones. Edible Fungi of China 16(4): 19.
Toplam 106 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makale
Yazarlar

Serap Kökcü Bu kişi benim 0000-0001-7312-2445

Nermin Sarıgül 0000-0001-9526-3310

Proje Numarası 0564-YL-19
Yayımlanma Tarihi 23 Mayıs 2021
Kabul Tarihi 4 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kökcü, S., & Sarıgül, N. (2021). Atık Mantar Kompostunun Geleneksel ve Yeni Kullanım Alanları. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(1), 156-166. https://doi.org/10.29048/makufebed.842139