Chemical Vapor Deposition Method and Types in Thin Film Production
Yıl 2021,
, 351 - 363, 01.12.2021
Ayşegül Çoşğun
,
Ayşegül Taşçıoğlu
,
Gökhan Yılmaz
Öz
Thin film technology is widely used in almost every sector. Especially it is used in the electronic device industry. The most important factor in preferring thin films is that their morphological structure can be adjusted depending on their production, their stoichiometry can be controlled and their homogeneity. For this reason, thin film production technique is really important. The most commonly used method to obtain these properties is the chemical vapor deposition method. Depending on this method, studies have been made on different designs. In this study, chemical vapor deposition (CVD) method and its types were investigated and it was aimed to compare the methods.
Kaynakça
- Bohm, J., R. A. Laudise (1972). In The Growth of Single Crystals. Kristall Und Technik, 7(1–3): K17-K18.
- Cibert, C., Hidalgo, H., Champeaux, C., Tristant, P., Tixier, C., Desmaison, J., Catherinot, A. (2008). Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition. Thin Solid Films 516: 1290-1296.
- Corboy, J. F., Pagliaro, R. (1983). Investigation of The Factors That Influence The Deposit/Etch Balance In A Radiant-Heated Silicon Epitaxial Reactor. R.C.A. Review, 44(2): 231–249.
- Crowell, J. E. (2003). Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21(5): 88–95.
- Devi A., Beranek, R., Eichberger, R., Toroker, M.C., Nagli, M., Mitoraj, M., Friedrich, D., Müller, S., Hirst, J., Schütz, H.M., Becker, H., Rogalla, D., Cwick, S., Sadlo, A., Mai, L., Reyes, Q.M, Peeters, D. (2018). CVD-Grown Copper Tungstate Thin Films For Solar Water Splitting. Journal of Materials Chemistry A 6: 10206-10216.
- Doppelbauer, J., Baeuerle, D. (1986). Kinetic Studies of Pyrolytic Laser-Induced Chemical Processes. 1986 Editions de Physique, Conference Proceedings 53-56.
- Evans, G. H. (1991). Design and Verification of Nearly Ideal Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor. Journal of the Electrochemical Society, 138(6): 1806-1816.
- Eversteyn, F. C., Severin, P. J. W., Brekel, C. H. J. V. D., Peek, H. L. (1970). A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor. Journal of the Electrochemical Society 117(7): 1-925.
- Flinn, R. A., Trojan, P. K. (1981). Engineering Materials and Their Applications. In Manufacturing Technology. CRC Press, 90-123.
- Hintermann, H. E., Perry, A. J., Horvath, E. (1978). Chemical vapour deposition applied in tribology. Wear 47(2): 407–415.
- Holland, L. (1956). A New Apparatus for Cathodic Sputtering. Nature 177: 1229.
- Karimi, M., Ghasemi, A., Mirkiani, S., Moosavi, S. M., Moosavi Basri, S. M., Hamblin, M. R. (2017). Carbon Nanotubes in Drug and Gene Delivery. In Carbon Nanotubes in Drug and Gene Delivery. IOP Publishing.
- Kern, W., Vossen, J. L. (2012). Thin Film Processes II. In Thin Film Processes II. Elsevier, 1-866.
- Kobayashi, M., Hoshinouchi, S. (1990). Introduction to chemical vapor deposition. Boshoku Gijutsu, 39(10): 576–581.
- Kumar, J.R., Vivek, S., Jyoti, S., Sushobhan, A., Navakanta, B. (2019). CVD Grown Cuprous Oxide Thin Film Based High Performance Chemiresistive Ammonia Gas Sensors. IEEE Sensors Journal 19: 11759-11766.
- Lieberman, M. A., Lichtenberg, A. J. (2005). Principles of Plasma Discharges and Materials Processing: Second Edition. In Principles of Plasma Discharges and Materials Processing: Second Edition. John Wiley and Sons, 1–757.
- Manasevit, H. M. (1968). Single-crystal gallium arsenide on insulating substrates. Applied Physics Letters 12(4): 156–159.
- Manke, C. W., Donaghey, L. F. (1977). Analysis of Transport Processes. In Vertical Cylinder Epitaxy Reactors. Journal of the Electrochemical Society, 77-5: 151–165.
- Martinu, L., Poitras, D. (2000). Plasma deposition of optical films and coatings: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 18(6): 2619–2645.
- Mattox, D. M. (2003). The Foundations of Vacuum Coating Technology. In The Foundations of Vacuum Coating Technology. The Foundations of Vacuum Coating Technology, Elsevier, 1–150.
- Mercier, F., Coindeau, S., Lay, S., Crisci, A., Benz, M., Encinas, T., Boichot, R., Mantoux, A., Jimenez, C., Weiss, F., Blanquet, E. (2014). Niobium nitride thin films deposited by high temperature chemical vapor deposition. Surface and Coatings Technolgy 260: 126-132.
- Mond, L., Langer, C., Quincke, F. (1990). Action of Carbon Monoxide on Nickel. In Journal of Organometallic Chemistry 57: 749-753.
- Ohring, M. (2013). The Materials Science of Thin Films. In The Materials Science of Thin Films. Elsevier, 1-704.
- Osgood, R. M., Gilgen, H. H. (1985). Laser Direct Writing of Materials. Annual Review of Materials Science 15(1): 549–576.
- Pech-Canul, M. I., Valdez Rodríguez, S., González, L. A., Ravindra, N. M. (2019). Emerging Opportunities and Future Directions. In Semiconductors. Springer International Publishing 575–583.
- Pessoa, R. S., Fraga, M. A., Santos, L. V., Galvão, N. K. A. M., Maciel, H. S., Massi, M. (2014). Plasma-assisted techniques for growing hard nanostructured coatings: An overview. Anti-Abrasive Nanocoatings: Current and Future Applications 456–479.
- Pierson, H. O. (1992). The Chemistry of Cvd. In Handbook of Chemical Vapor Deposition. Elsevier, 51-80.
- Powell, C. F., Oxley, J. H., Blocher, J. M., Klerer, J. (1966). Vapor Deposition. Journal of The Electrochemical Society 113(10): 266C.
- Rand, M. J. (1979). Plasma-Promoted Deposition of Thin Inorganic Films. Journal of Vacuum Science and Technology , 16(2): 420–427.
- Sivaram, S., Sivaram, S. (1995). Reactor Design for Thermal CVD. Chemical Vapor Deposition, 94–118.
- Sniegowski, J. J., De Boer, M. P. (2000). IC-compatible polysilicon surface micromachining. Annual Review of Materials Science, 30: 299–333.
- Waits, R. K. (2000). Evolution of integrated-circuit vacuum processes: 1959–1975. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 19(1): 388–388.
- Wasa, K., Kitabatake, M., Adachi, H., Wasa, K., Kitabatake, M., Adachi, H. (2004). Thin Film Materials and Devices. Thin Film Materials Technology 1–16.
- Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, H., Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters 9: 1752-1758.
- Windle, A.H., Li, Y., Kinloch, I.A. (2004). Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis. Science 304: 276-278.
- Zhao, P., Huang, Z., Mao, Y., Wang, Y., Takashi, G. (2014). Preparation of (100)-oriented CeO2 film on (100) MgO single crystal substrate by laser chemical vapor deposition using solid precursor. Ceramics International 40(10): 15919–15923.
- Zhang, S.X., Fertig, H.A., Werbianskyj, M., Starr, M., Losovyj, Y., Li, Z., Park, K., Liu, H.M., Xu, E.Z. (2017). P-type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 9: 3576-3584.
- Zhu, W.H., Si, J.W., Zhang, L., Li, T., Song, W.Q., Zhou, Y.T., Yu, J.H., Chen, R., Feng, Y.X., Wang, L.C. (2020). Growth of GaN on monolayer hexagonal boron nitride by chemical vapor deposition for ultraviolet photodetectors. Semiconductor Science and Technology 35: 125025.
- Zou, C. W., Wang, H. J., Li, M., Yu, Y. F., Liu, C. S., Guo, L. P., & Fu, D. J. (2010). Characterization and properties of TiN-containing amorphous Ti-Si-N nanocomposite coatings prepared by arc assisted middle frequency magnetron sputtering. Vacuum 84(6): 817–822.
İnce Film Üretiminde Kimyasal Buhar Biriktirme Yöntemi ve Çeşitleri
Yıl 2021,
, 351 - 363, 01.12.2021
Ayşegül Çoşğun
,
Ayşegül Taşçıoğlu
,
Gökhan Yılmaz
Öz
İnce film teknolojisi hemen her sektörde özellikle de elektronik cihaz sektöründe yaygın olarak kullanılmaktadır. İnce filmlerin tercih edilmesindeki en büyük etken üretimine bağlı olarak morfolojik yapısının ayarlanabilir olması, stokiyometrisinin kontrol edilebilmesi ve homojenliğidir. Bu sebeple ince film üretim teknikleri büyük önem arz etmektedir. Bu özellikleri elde etmek için en çok kullanılan yöntem kimyasal buhar biriktirme (KBB) yöntemidir. Bu yönteme bağlı olarak da farklı tasarımlar üzerine çalışmalar yapılmıştır. Bu çalışmada ise kimyasal buhar biriktirme yöntemleri araştırılarak yöntemlerin avantajlı ve dezavantajlı olduğu parametreler belirlenmiştir.
Kaynakça
- Bohm, J., R. A. Laudise (1972). In The Growth of Single Crystals. Kristall Und Technik, 7(1–3): K17-K18.
- Cibert, C., Hidalgo, H., Champeaux, C., Tristant, P., Tixier, C., Desmaison, J., Catherinot, A. (2008). Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition. Thin Solid Films 516: 1290-1296.
- Corboy, J. F., Pagliaro, R. (1983). Investigation of The Factors That Influence The Deposit/Etch Balance In A Radiant-Heated Silicon Epitaxial Reactor. R.C.A. Review, 44(2): 231–249.
- Crowell, J. E. (2003). Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21(5): 88–95.
- Devi A., Beranek, R., Eichberger, R., Toroker, M.C., Nagli, M., Mitoraj, M., Friedrich, D., Müller, S., Hirst, J., Schütz, H.M., Becker, H., Rogalla, D., Cwick, S., Sadlo, A., Mai, L., Reyes, Q.M, Peeters, D. (2018). CVD-Grown Copper Tungstate Thin Films For Solar Water Splitting. Journal of Materials Chemistry A 6: 10206-10216.
- Doppelbauer, J., Baeuerle, D. (1986). Kinetic Studies of Pyrolytic Laser-Induced Chemical Processes. 1986 Editions de Physique, Conference Proceedings 53-56.
- Evans, G. H. (1991). Design and Verification of Nearly Ideal Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor. Journal of the Electrochemical Society, 138(6): 1806-1816.
- Eversteyn, F. C., Severin, P. J. W., Brekel, C. H. J. V. D., Peek, H. L. (1970). A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor. Journal of the Electrochemical Society 117(7): 1-925.
- Flinn, R. A., Trojan, P. K. (1981). Engineering Materials and Their Applications. In Manufacturing Technology. CRC Press, 90-123.
- Hintermann, H. E., Perry, A. J., Horvath, E. (1978). Chemical vapour deposition applied in tribology. Wear 47(2): 407–415.
- Holland, L. (1956). A New Apparatus for Cathodic Sputtering. Nature 177: 1229.
- Karimi, M., Ghasemi, A., Mirkiani, S., Moosavi, S. M., Moosavi Basri, S. M., Hamblin, M. R. (2017). Carbon Nanotubes in Drug and Gene Delivery. In Carbon Nanotubes in Drug and Gene Delivery. IOP Publishing.
- Kern, W., Vossen, J. L. (2012). Thin Film Processes II. In Thin Film Processes II. Elsevier, 1-866.
- Kobayashi, M., Hoshinouchi, S. (1990). Introduction to chemical vapor deposition. Boshoku Gijutsu, 39(10): 576–581.
- Kumar, J.R., Vivek, S., Jyoti, S., Sushobhan, A., Navakanta, B. (2019). CVD Grown Cuprous Oxide Thin Film Based High Performance Chemiresistive Ammonia Gas Sensors. IEEE Sensors Journal 19: 11759-11766.
- Lieberman, M. A., Lichtenberg, A. J. (2005). Principles of Plasma Discharges and Materials Processing: Second Edition. In Principles of Plasma Discharges and Materials Processing: Second Edition. John Wiley and Sons, 1–757.
- Manasevit, H. M. (1968). Single-crystal gallium arsenide on insulating substrates. Applied Physics Letters 12(4): 156–159.
- Manke, C. W., Donaghey, L. F. (1977). Analysis of Transport Processes. In Vertical Cylinder Epitaxy Reactors. Journal of the Electrochemical Society, 77-5: 151–165.
- Martinu, L., Poitras, D. (2000). Plasma deposition of optical films and coatings: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 18(6): 2619–2645.
- Mattox, D. M. (2003). The Foundations of Vacuum Coating Technology. In The Foundations of Vacuum Coating Technology. The Foundations of Vacuum Coating Technology, Elsevier, 1–150.
- Mercier, F., Coindeau, S., Lay, S., Crisci, A., Benz, M., Encinas, T., Boichot, R., Mantoux, A., Jimenez, C., Weiss, F., Blanquet, E. (2014). Niobium nitride thin films deposited by high temperature chemical vapor deposition. Surface and Coatings Technolgy 260: 126-132.
- Mond, L., Langer, C., Quincke, F. (1990). Action of Carbon Monoxide on Nickel. In Journal of Organometallic Chemistry 57: 749-753.
- Ohring, M. (2013). The Materials Science of Thin Films. In The Materials Science of Thin Films. Elsevier, 1-704.
- Osgood, R. M., Gilgen, H. H. (1985). Laser Direct Writing of Materials. Annual Review of Materials Science 15(1): 549–576.
- Pech-Canul, M. I., Valdez Rodríguez, S., González, L. A., Ravindra, N. M. (2019). Emerging Opportunities and Future Directions. In Semiconductors. Springer International Publishing 575–583.
- Pessoa, R. S., Fraga, M. A., Santos, L. V., Galvão, N. K. A. M., Maciel, H. S., Massi, M. (2014). Plasma-assisted techniques for growing hard nanostructured coatings: An overview. Anti-Abrasive Nanocoatings: Current and Future Applications 456–479.
- Pierson, H. O. (1992). The Chemistry of Cvd. In Handbook of Chemical Vapor Deposition. Elsevier, 51-80.
- Powell, C. F., Oxley, J. H., Blocher, J. M., Klerer, J. (1966). Vapor Deposition. Journal of The Electrochemical Society 113(10): 266C.
- Rand, M. J. (1979). Plasma-Promoted Deposition of Thin Inorganic Films. Journal of Vacuum Science and Technology , 16(2): 420–427.
- Sivaram, S., Sivaram, S. (1995). Reactor Design for Thermal CVD. Chemical Vapor Deposition, 94–118.
- Sniegowski, J. J., De Boer, M. P. (2000). IC-compatible polysilicon surface micromachining. Annual Review of Materials Science, 30: 299–333.
- Waits, R. K. (2000). Evolution of integrated-circuit vacuum processes: 1959–1975. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 19(1): 388–388.
- Wasa, K., Kitabatake, M., Adachi, H., Wasa, K., Kitabatake, M., Adachi, H. (2004). Thin Film Materials and Devices. Thin Film Materials Technology 1–16.
- Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, H., Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters 9: 1752-1758.
- Windle, A.H., Li, Y., Kinloch, I.A. (2004). Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis. Science 304: 276-278.
- Zhao, P., Huang, Z., Mao, Y., Wang, Y., Takashi, G. (2014). Preparation of (100)-oriented CeO2 film on (100) MgO single crystal substrate by laser chemical vapor deposition using solid precursor. Ceramics International 40(10): 15919–15923.
- Zhang, S.X., Fertig, H.A., Werbianskyj, M., Starr, M., Losovyj, Y., Li, Z., Park, K., Liu, H.M., Xu, E.Z. (2017). P-type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 9: 3576-3584.
- Zhu, W.H., Si, J.W., Zhang, L., Li, T., Song, W.Q., Zhou, Y.T., Yu, J.H., Chen, R., Feng, Y.X., Wang, L.C. (2020). Growth of GaN on monolayer hexagonal boron nitride by chemical vapor deposition for ultraviolet photodetectors. Semiconductor Science and Technology 35: 125025.
- Zou, C. W., Wang, H. J., Li, M., Yu, Y. F., Liu, C. S., Guo, L. P., & Fu, D. J. (2010). Characterization and properties of TiN-containing amorphous Ti-Si-N nanocomposite coatings prepared by arc assisted middle frequency magnetron sputtering. Vacuum 84(6): 817–822.