Araştırma Makalesi
BibTex RIS Kaynak Göster

Maxwell Gerilme Tensör Yöntemini Kullanarak Anahtarlamalı Relüktans Motorun Hava Aralığı Uzunluğunun Radyal ve Teğetsel Kuvvetler Üzerindeki Etkisinin Belirlenmesi

Yıl 2021, , 491 - 499, 31.12.2021
https://doi.org/10.29048/makufebed.990620

Öz

Anahtarlamalı Relüktans Motorlar (ARM) son yıllarda endüstriyel uygulamalarda sıklıkla kullanılmaya başlanmıştır. Özellikle elektrikli araçlar ve evsel uygulamalar da karşımıza çıkmaktadır. ARM’ un bu kadar yaygın bir şekilde kullanılmaya başlamasına rağmen en büyük dezavantajlarından birisi de meydana gelen moment salınımlarıdır. Moment salınımlarını azaltmak için hem motorun tasarımı sırasında hem de motorun kontrol kısımlarında iyileştirmeler yapılarak azaltılmaya çalışılmaktadır. Momentin oluşmasında ise teğetsel kuvvet etkili olmaktadır. Bu sebeple bu yöndeki kuvvetin belirlenmesi ve analizi motorlar için büyük önem arz etmektedir. Bu çalışmada anahtarlamalı relüktans motorun hava aralığı uzunluk değerinin radyal ve teğetsel yöndeki kuvvet değerleri üzerine etkisi maxwell gerilme tensör yöntemi ile analiz edilmiştir. Optimal hava aralığı uzunluğu belirlenmeye çalışılmıştır. 550 W, 8/6 kutup sayılarında anahtarlamalı relüktans motor kullanılmıştır. Her bir motor modeline ait radyal ve teğetsel manyetik akı yoğunluğu değerleri ve kuvvet değerleri elde edilmiştir. Elde edilen sonuçlara göre hava aralığı uzunluğunun artması ile hem radyal hem de teğetsel kuvvet değerlerinde azalma meydana geldiği tespit edilmiştir.

Kaynakça

  • Abid, N., Thakur, A. (2019). Numerical investigation and optimization of switched reluctance machine with geometrical parameters using ansys. International Journal of Advance Research and Innovative Ideas in Education, 5(6): 1249-1259.
  • AP07-0105. (2021). A switched reluctance motor problem, Application Note, 1-28.
  • Ayaz, M., Yılmaz, K. (2008). The effects of geometric parameters on performance of conventional and mutually coupled switched reluctance motors. Elektrik-Elektronik ve Bilgisayar Mühendisliği Sempozyumu (ELECO), Nisan 03-07, 2008, Bursa, Turkey, Book of Proceedings, 1-6.
  • Benhama, A., Williamson, A. C., Reece, A. B. J. (1997). SRM torque computation from 3D finite element field solutions. Emd97 Proceedings 8th International Conference on Electrical Machines and Drives, September 1-3, 1997, Cambridge, UK, Book of Proceedings, 59-63.
  • Dursun, M., Özden, S. (2008). Değişken hızlı sürücülü ve bulanık mantık denetimli bir anahtarlamalı relüktans motorun asansör tahrikinde benzetimi ve uygulanması. Journal of Polytechnic, 11(2): 129-137.
  • Elamin, M. (2017). Acoustic noise mitigation of switched reluctance machines through skewing methods. The Graduate Faculty of the University of Akron, Master of Science, 76.
  • Fu, Z., Wang, X., Cao, C., Liu, M., Wang, K. (2017). Research on electromagnetic force distribution and vibration performance of a novel 10/4 switched reluctance motor. IOP Conf. Series: Materials Science and Engineering, 207: 1-9.
  • Gan, C., Wu, J., Sun, Q., Kong, W., Li, H., Hu, Y. (2018). A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications, IEEE Access, 6: 31430–31443.
  • Gu, L., Bostanci, E., Moallem, M., Wang, S., Devendra, P. (2016). Analytical calculation of the electromagnetic field in SRM using conformal mapping method. IEEE Transportation Electrification Conference and Expo (ITEC), June 27-29, 2016, Dearborn, MI, USA, Book of Proceedings, 1-6.
  • Marcsa, D., Kuczmann, M. (2017). Design and control for torque ripple reduction of a 3-phase switched reluctance motor. Computers and Mathematics with Applications, 74(1): 89-95.
  • Polat, M., Oksuztepe, E., Omac Z., Yıldırım, M., Kurum, H. (2013). Examination of radial force with finite element method in switched reluctance motor. 8th International Conference on Electrical and Electronics Engineering (ELECO), November 28-30, 2013, Bursa, Turkey, Book of Proceedings, 576-580.
  • Popescu, M. (2006). Prediction of the electromagnetic torque in synchronous machines through maxwell stress harmonic filter (HFT) method. Electrical Engineering, 89: 117–125.
  • Takemoto, M., Chiba, A., Akagi, H., Fukao, T. (2004). Torque and suspension force in a bearingless switched reluctance motor. Electrical Engineering in Japan, 157(2): 72-82.
  • URL-1 (2021.) https://www.femm.info/wiki/HomePage (Erişim Tarihi: 02.03.2021).
  • Yoo, J. (2002). Reduction of vibration caused by magnetic force in a switched reluctance motor by topology optimization. Transactions of the ASME, 69: 380-387.
  • Zhu, W., Pekarek, S., Fahimi, B., Deken, B. (2007). Investigation of force generation in a permanent magnet synchronous machine. IEEE Transactions on Energy Conversion, 22(3): 557–565.

Determination of the Effect of the Air Gap Length of a Switched Reluctance Motor on Radial and Tangential Forces by using Maxwell Stress Tensor Method

Yıl 2021, , 491 - 499, 31.12.2021
https://doi.org/10.29048/makufebed.990620

Öz

Switched Reluctance Motors (SRMs) have been used frequently in industrial applications in recent years. Especially electric vehicles and domestic applications are also encountered. Although SRM is being used so widely, one of the biggest disadvantages is the torque ripple that occur. In order to reduce the torque ripple, it is tried to be reduced by making improvements both during the design of the motor and in the control parts of the motor. Tangential force is effective in the formation of the torque. For this reason, determination and analysis of the force in this direction is of great importance for motors. In this study, the effect of the air gap length value of the switched reluctance motor on the radial and tangential force values was analysed using the maxwell stress tensor method. The optimal air gap length has been tried to be determined. Switched reluctance motor with 550 W, 8/6 pole numbers are used. Radial and tangential magnetic flux density values and force values of each motor model were obtained. According to the results, it was determined that with the increase of the air gap length, both radial and tangential force values decreased.

Kaynakça

  • Abid, N., Thakur, A. (2019). Numerical investigation and optimization of switched reluctance machine with geometrical parameters using ansys. International Journal of Advance Research and Innovative Ideas in Education, 5(6): 1249-1259.
  • AP07-0105. (2021). A switched reluctance motor problem, Application Note, 1-28.
  • Ayaz, M., Yılmaz, K. (2008). The effects of geometric parameters on performance of conventional and mutually coupled switched reluctance motors. Elektrik-Elektronik ve Bilgisayar Mühendisliği Sempozyumu (ELECO), Nisan 03-07, 2008, Bursa, Turkey, Book of Proceedings, 1-6.
  • Benhama, A., Williamson, A. C., Reece, A. B. J. (1997). SRM torque computation from 3D finite element field solutions. Emd97 Proceedings 8th International Conference on Electrical Machines and Drives, September 1-3, 1997, Cambridge, UK, Book of Proceedings, 59-63.
  • Dursun, M., Özden, S. (2008). Değişken hızlı sürücülü ve bulanık mantık denetimli bir anahtarlamalı relüktans motorun asansör tahrikinde benzetimi ve uygulanması. Journal of Polytechnic, 11(2): 129-137.
  • Elamin, M. (2017). Acoustic noise mitigation of switched reluctance machines through skewing methods. The Graduate Faculty of the University of Akron, Master of Science, 76.
  • Fu, Z., Wang, X., Cao, C., Liu, M., Wang, K. (2017). Research on electromagnetic force distribution and vibration performance of a novel 10/4 switched reluctance motor. IOP Conf. Series: Materials Science and Engineering, 207: 1-9.
  • Gan, C., Wu, J., Sun, Q., Kong, W., Li, H., Hu, Y. (2018). A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications, IEEE Access, 6: 31430–31443.
  • Gu, L., Bostanci, E., Moallem, M., Wang, S., Devendra, P. (2016). Analytical calculation of the electromagnetic field in SRM using conformal mapping method. IEEE Transportation Electrification Conference and Expo (ITEC), June 27-29, 2016, Dearborn, MI, USA, Book of Proceedings, 1-6.
  • Marcsa, D., Kuczmann, M. (2017). Design and control for torque ripple reduction of a 3-phase switched reluctance motor. Computers and Mathematics with Applications, 74(1): 89-95.
  • Polat, M., Oksuztepe, E., Omac Z., Yıldırım, M., Kurum, H. (2013). Examination of radial force with finite element method in switched reluctance motor. 8th International Conference on Electrical and Electronics Engineering (ELECO), November 28-30, 2013, Bursa, Turkey, Book of Proceedings, 576-580.
  • Popescu, M. (2006). Prediction of the electromagnetic torque in synchronous machines through maxwell stress harmonic filter (HFT) method. Electrical Engineering, 89: 117–125.
  • Takemoto, M., Chiba, A., Akagi, H., Fukao, T. (2004). Torque and suspension force in a bearingless switched reluctance motor. Electrical Engineering in Japan, 157(2): 72-82.
  • URL-1 (2021.) https://www.femm.info/wiki/HomePage (Erişim Tarihi: 02.03.2021).
  • Yoo, J. (2002). Reduction of vibration caused by magnetic force in a switched reluctance motor by topology optimization. Transactions of the ASME, 69: 380-387.
  • Zhu, W., Pekarek, S., Fahimi, B., Deken, B. (2007). Investigation of force generation in a permanent magnet synchronous machine. IEEE Transactions on Energy Conversion, 22(3): 557–565.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Asım Gökhan Yetgin 0000-0003-3971-0504

Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 10 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yetgin, A. G. (2021). Maxwell Gerilme Tensör Yöntemini Kullanarak Anahtarlamalı Relüktans Motorun Hava Aralığı Uzunluğunun Radyal ve Teğetsel Kuvvetler Üzerindeki Etkisinin Belirlenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(Ek (Suppl.) 1), 491-499. https://doi.org/10.29048/makufebed.990620