Polifosfazen Yapılı Kurkumin Mikrokürelerin Sentezi, Karakterizasyonu ve Spektroskopik Özellikleri
Yıl 2017,
Cilt: 8 Sayı: 1, 56 - 65, 12.01.2017
Simge Metinoğlu
,
Yasemin Süzen
Öz
Bu çalışmada, hekzaklorosiklotrifosfazen (N3P3Cl6,
trimer) ile kurkumin molekülünün polikondenzasyon reaksiyonu sonucu
siklomatriks polifosfazen yapılı mikroküreler elde edilmiştir. Sentezlenen
kurkumin mikrokürelerin karakterizasyonu SEM-EDX, FTIR, XRD teknikleri ile yapılmış,
partikül boyutları ölçülmüştür. Ayrıca elde edilen mikrokürelerin UV ve Floresans
özellikleri incelenmiştir.
Kaynakça
- Ali, A., Banerjea, A.C. (2016). Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci. Rep., 6: 1-9.
- Allcock, H. R. (1972). Recent advances in phosphazene (phosphonitrilic) chemistry. Chem. Rev., 72:4, 315–356.
- Chen, C., Zhu, X.Y., Gao, Q.L., Fang, F., Wang, L.W., Huang, X.J. (2016). Immobilization of lipase onto functional cyclomatrixpolyphosphazene microspheres. J. Mol. Catal. B: Enzym., 132:67–74.
- Erdik, E. (1993) Elektronik Geçiş Türleri ve Konjugasyonun Etkisi, Organik Kimyada Spektroskopik Yöntemler içinde (s. 15-24). Ankara: Gazi Kitabevi.
- Gudasi, K.B., Vadavi, R.S., Sreedhar, B., Sairam, M., Shelke, N.B., Mallikarjuna, N.N., Kulkarni, P.V., Aminahbavi, T.M. (2007). Synthesis and characterization of some organopolyphosphazenes and their controlled-release characteristics. Des. Monomers. Polym., 10: 3, 235–251.
- Khopde, S. M., Priyadarsini, K. I., Palit, D. K., Mukherjee, T. (2000). Effect of Solvent on the excited-state photophysical properties of curcumin. Photochem. Photobiol., 72(5), 625–631.
- Liu, W., Huang, X., Wei, H., Tang, X., Zhu, L. (2011). Intrinsically fluorescent nanoparticles with excellent stability based on a highly crosslinked organic–inorganic hybrid polyphosphazene material. Chem. Commun., 47: 11447–11449.
- Mohan, P.R.K., Sreelakshmi, G., Muraleedharan, C.V., Joseph, R. (2012). Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc., 62: 77–84.
- Mondal, S., Ghosh, S., Moulik, S.P. (2016). Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. J. Photochem. Photobiol. B., 158: 212–218.
- Nardo, L., Paderno, R., Andreoni, A., Másson, M., Haukvik, T., Tønnesen, H. H. (2008). Role of H-bond formation in the photoreactivity of curcumin. Spectroscopy., 22, 187–198.
- Niedzwiecki, A., Roomi, M.W., Kalinovsky, T., Rath, M. (2016). Anticancer efficacy of polyphenols and their combinations. Nutrients., 8: 552.
- Ozay, H., Ozay, O. (2014). Synthesis and characterization of drug microspheres containingphosphazene for biomedical applications. Colloids and Surfaces A: Physicochem. Eng. Aspects., 450: 99–105.
- Pan, T., Huang, X., Wei, H., Wei, W., Tang, X. (2012). Intrinsically fluorescent microspheres with superior thermal stability and broad ultraviolet-visible absorption based on hybrid polyphosphazene material. Macromol. Chem. Phys., 213: 1590−1595.
- Patra, D., Barakat, C. (2011). Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochim. Acta Mol. Biomol. Spectrosc., 79: 1034– 1041.
- Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Russo, L., Lillo, A.D., Laino, L., Muzio, L.L. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 10: 1615-1623.
- Priyadarsini, K.I. (2009). Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C., 10: 81–95.
- Sun, L., Liu, T., Li, H., Yang, L., Meng, L., Lu, Q., Long, J. (2015). Fluorescent and cross-linked organic−inorganic hybrid nanoshells for monitoring drug delivery. ACS Appl. Mater. Interfaces , 7:4990−4997.
- Wei, W., Lu, R., Tang, S., Liu, X. (2015). Highly cross-linked fluorescent poly(cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J. Mater. Chem. A., 3: 4604-4611.
- Wei, W., Lu, R., Xie, H., Zhang, Y., Bai, X., Gu, L., Da, R., Liu, X. (2015). Selective adsorption and separation of dyes from an aqueous solution on organic–inorganic hybrid cyclomatrix polyphosphazene submicro-spheres. J. Mater. Chem. A., 3: 4314–4322.
- Wu, F.Y., Sun,M.Z., Xiang, Y.L., Wu, Y.M., Tong, D.Q. (2010). Curcumin as a colorimetric and fluorescent chemosensor for selective recognition of fluoride ion. J. Lumin., 130: 304–30
- Yıldız, A., Genç, Ö., Bektaş S. (1997). Ultraviole ve Görünür Bölge Moleküler Absorpsiyon Spektroskopisi, Enstrümantal Analiz Yöntemleri içinde (s. 33-40). Ankara: Hacettepe Üniversitesi Yayınları.
- Zhenga, Q.T., Yanga, Z.H., Yua, L.Y., Rena, Y.Y., Huanga, Q.X., Liua, Q., Maa,X.Y., Chena, Z.K., Wanga, Z.B., Zhenga, X. (2016). Synthesis and antioxidant activity of curcumin analogs. J. Asian. Nat. Prod. Res., 1-15.
Yıl 2017,
Cilt: 8 Sayı: 1, 56 - 65, 12.01.2017
Simge Metinoğlu
,
Yasemin Süzen
Kaynakça
- Ali, A., Banerjea, A.C. (2016). Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci. Rep., 6: 1-9.
- Allcock, H. R. (1972). Recent advances in phosphazene (phosphonitrilic) chemistry. Chem. Rev., 72:4, 315–356.
- Chen, C., Zhu, X.Y., Gao, Q.L., Fang, F., Wang, L.W., Huang, X.J. (2016). Immobilization of lipase onto functional cyclomatrixpolyphosphazene microspheres. J. Mol. Catal. B: Enzym., 132:67–74.
- Erdik, E. (1993) Elektronik Geçiş Türleri ve Konjugasyonun Etkisi, Organik Kimyada Spektroskopik Yöntemler içinde (s. 15-24). Ankara: Gazi Kitabevi.
- Gudasi, K.B., Vadavi, R.S., Sreedhar, B., Sairam, M., Shelke, N.B., Mallikarjuna, N.N., Kulkarni, P.V., Aminahbavi, T.M. (2007). Synthesis and characterization of some organopolyphosphazenes and their controlled-release characteristics. Des. Monomers. Polym., 10: 3, 235–251.
- Khopde, S. M., Priyadarsini, K. I., Palit, D. K., Mukherjee, T. (2000). Effect of Solvent on the excited-state photophysical properties of curcumin. Photochem. Photobiol., 72(5), 625–631.
- Liu, W., Huang, X., Wei, H., Tang, X., Zhu, L. (2011). Intrinsically fluorescent nanoparticles with excellent stability based on a highly crosslinked organic–inorganic hybrid polyphosphazene material. Chem. Commun., 47: 11447–11449.
- Mohan, P.R.K., Sreelakshmi, G., Muraleedharan, C.V., Joseph, R. (2012). Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc., 62: 77–84.
- Mondal, S., Ghosh, S., Moulik, S.P. (2016). Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. J. Photochem. Photobiol. B., 158: 212–218.
- Nardo, L., Paderno, R., Andreoni, A., Másson, M., Haukvik, T., Tønnesen, H. H. (2008). Role of H-bond formation in the photoreactivity of curcumin. Spectroscopy., 22, 187–198.
- Niedzwiecki, A., Roomi, M.W., Kalinovsky, T., Rath, M. (2016). Anticancer efficacy of polyphenols and their combinations. Nutrients., 8: 552.
- Ozay, H., Ozay, O. (2014). Synthesis and characterization of drug microspheres containingphosphazene for biomedical applications. Colloids and Surfaces A: Physicochem. Eng. Aspects., 450: 99–105.
- Pan, T., Huang, X., Wei, H., Wei, W., Tang, X. (2012). Intrinsically fluorescent microspheres with superior thermal stability and broad ultraviolet-visible absorption based on hybrid polyphosphazene material. Macromol. Chem. Phys., 213: 1590−1595.
- Patra, D., Barakat, C. (2011). Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochim. Acta Mol. Biomol. Spectrosc., 79: 1034– 1041.
- Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Russo, L., Lillo, A.D., Laino, L., Muzio, L.L. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 10: 1615-1623.
- Priyadarsini, K.I. (2009). Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C., 10: 81–95.
- Sun, L., Liu, T., Li, H., Yang, L., Meng, L., Lu, Q., Long, J. (2015). Fluorescent and cross-linked organic−inorganic hybrid nanoshells for monitoring drug delivery. ACS Appl. Mater. Interfaces , 7:4990−4997.
- Wei, W., Lu, R., Tang, S., Liu, X. (2015). Highly cross-linked fluorescent poly(cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J. Mater. Chem. A., 3: 4604-4611.
- Wei, W., Lu, R., Xie, H., Zhang, Y., Bai, X., Gu, L., Da, R., Liu, X. (2015). Selective adsorption and separation of dyes from an aqueous solution on organic–inorganic hybrid cyclomatrix polyphosphazene submicro-spheres. J. Mater. Chem. A., 3: 4314–4322.
- Wu, F.Y., Sun,M.Z., Xiang, Y.L., Wu, Y.M., Tong, D.Q. (2010). Curcumin as a colorimetric and fluorescent chemosensor for selective recognition of fluoride ion. J. Lumin., 130: 304–30
- Yıldız, A., Genç, Ö., Bektaş S. (1997). Ultraviole ve Görünür Bölge Moleküler Absorpsiyon Spektroskopisi, Enstrümantal Analiz Yöntemleri içinde (s. 33-40). Ankara: Hacettepe Üniversitesi Yayınları.
- Zhenga, Q.T., Yanga, Z.H., Yua, L.Y., Rena, Y.Y., Huanga, Q.X., Liua, Q., Maa,X.Y., Chena, Z.K., Wanga, Z.B., Zhenga, X. (2016). Synthesis and antioxidant activity of curcumin analogs. J. Asian. Nat. Prod. Res., 1-15.