Review
BibTex RIS Cite

Ses Yalıtımı Açısından Doğal Liflerin Akustik Özellikleri

Year 2017, Volume: 8 Issue: Özel (Special) 1, 25 - 37, 02.07.2017

Abstract

Teknolojik gelişmeler beraberinde
gürültü sorununu da getirmiştir. Gürültü kontrolü yaşam ortamının kalitesini
arttırmada en önemli gerekliliklerden biri olmuştur. Gürültüyü önlemede petrol
kökenli malzemeler yaygın bir şekilde kullanılmaktadır. Petrol ve mineral
kökenli malzemelerin çevreye ve insan sağlığına verdiği zararlar göz önüne
alındığında, bu kimyasal malzemelere alternatif olarak yeni malzemeler bulma ve
geliştirme zorunluluk halini almıştır. Doğal lifler ses yalıtımı açısından
değerlendirildiğinde yenilenebilir, ucuz, yerli, bol, çevre dostu olması
nedeniyle büyük bir avantaj sağlamaktadır. Makalede Odun, kenaf, kenevir,
kabak, Hindistan cevizi, çay yaprağı, hurma ağacı, koyunyünü liflerinin akustik
özellikleri özetlenmiştir. Özellikle incelemelerde 125Hz, 250Hz, 500Hz, 1000Hz,
2000Hz, 4000Hz frekanslardaki akustik davranış üzerinde yoğunlaşılmıştır.
Sonuçların belirtilen frekanslarda kabul edilebilir sınırlar içerisinde olduğu
ve doğal liflerin fiziksel özellikleri arttıkça akustik özelliğinin belirli
sınırlar içerisinde arttığı tespit edilmiştir.

References

  • Arenas, J. P., Crocker, M. J. (2010). Recent trends in porous sound-absorbing materials. Sound & Vibration 44: 12-18.
  • Asdrubali, F. (2006). Survey on the acoustical properties of new sustainable materials for noise control. Proceedings of Euronoise, Tampere, Finland.
  • BAKA (2012). Batı Akdeniz Kalkınma Ajansı. Orman ve Orman Ürünleri Sektör Raporu. https://www.baka.org.tr/uploads/1357649370ORMAN-URUNLERi-RAPORU-12ARALiK.pdf (Erişim tarihi:10.02.2017)
  • Ballagh, K. O. (1996). Acoustical properties of wool. Applied Acoustics, 48: 101-120.
  • Berardi, U., Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94: 840-852.
  • Bribián, I. Z., Capilla, A. V., Usón, A. A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46: 1133-1140.
  • Bruel and Kjaer, Brüel and Kjaer Impedance Tube product data type 7758. Brochure using 4- microphones with impedance tube, Bruel and Kjaer Sound and Vibration Measurement. Denmark Brüel&Kjær Application Note BO 0113-11. https://www.bksv.com/en/Applications/product-noise/Acoustic-material-testing (Erişim tarihi:03.02.2017)
  • Chandramohan, D., Marimuthu, K. (2011). A review on natural fibers. International Journal of Research and Reviews in Applied Sciences, 8: 194-206.
  • Huang, C., Nutt, S. (2009). Sound transmission prediction by 3-D elasticity theory. Applied Acoustics, 70: 730-736.
  • Çalışkan, M. (2011). Ses yalıtımı. 4DuvarKnauf 41: 26-30.
  • D.J. Oldham, C. Egan, R. Cookson. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72: 350-363.
  • DeBenedetti, B., Maffia, L., Rossi, S. (2007). From materials to eco-materials: life-cycle environmental approach for insulation products in building applications. Proceedings of the 8th International Conference of Eco-Materials, Brunel University, UK.
  • Demir, H., Top, A., Balköse, D., Ülkü, S. (2008). Dye adsorption behavior of Luffa cylindrica fibers. Journal of Hazardous Materials 153: 389-394
  • Dempsey, J. M. (1975). Hemp Fiber Crops. Univ. Presses of Florida, Gainesville, Florida, USA.
  • Dias, T., Monaragala, R., Needham, P., Lay, E. (2007). Analysis of sound absorption of tuck spacer fabrics to reduce automotive noise. Measurement Science and Technology, 18: 2657-2666.
  • Elwaleed, A. K., Nikabdullah, N., Nor, M. J., Tahir, M. F., Nuawi, M. Z., Abakr, Y. A. (2014). Experimental study on the effect of compression on the sound absorption of date palm fibers. World Applied Sciences Journal, 31: 40-44.
  • Ersoy, S., Küçük, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70: 215-220.
  • Everest, F. A., Pohlmann, K. C., Books, T. (2001). The Master Handbook of Acoustics. McGraw-Hill, New York.
  • Glé, P., Gourdon, E., Arnaud, L. (2011). Acoustical properties of materials made of vegetable particles with several scales of porosity. Applied Acoustics, 72: 249-259.
  • Heed, C. (2008). Sound Absorption and Acoustic Surface Impedance. Stockholm, Sweden.
  • Kaya, A. İ. (2016). Kompozit malzemeler ve özellikleri. Putech & Composite Poliüretan ve Kompozit Sanayi Dergisi 29: 38-45.
  • Kaya, A. İ. (2015). Atık Kağıtlardan Geri Kazanılmış Liflerden Kompozit Malzeme Üretim Olanaklarının Araştırılması. Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği Anabilim Dalı, Isparta.
  • Khristova, P., Kordsachia, O., Khider, T. (2005). Alkaline pulping with additives of date palm rachis and leaves from Sudan. Bioresource Technology 96: 79-85.
  • Kinnane, O., Reilly, A., Grimes, J., Pavia, S., Walker, R. (2016). Acoustic absorption of hemp-lime construction. Construction and Building Materials 122: 674-682.
  • http://www.kisi.deu.edu.tr/userweb/abdullah.secgin/ (Erişim tarihi:15.03.2017)
  • Koruk, H., Genç, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters 157: 166-168.
  • Kuroda, K. (2006). International development and standardisation of environmental information indices of materials. Proceedings of the 7th International Conference on EcoBalance-EcoBalance2006, sect. E1 -1 - 14-16 November 2006, Tsukuba, Japan.
  • http://www.marmatek.com/akustik-empedans-tupu-kundts-tube/ (Erişim tarihi:23.03.2017)
  • Nielsen T. Q. A Powerful Combination for Building Acoustics Measurements. Brüel&Kjær Application Note BO 0113-11.
  • Putra, A., Abdullah, Y., Efendy, H., Mohamad, W. M. F. W., Salleh, N. L. (2013). Biomass from paddy waste fibers as sustainable acoustic material. Advances in Acoustics and Vibration 2013:1-7.
  • http://www.risk akademi.com (Erişim tarihi:12.02.2017)
  • Rozli, Z., Zulkarnain, Z. (2010). Noise control using coconut coir fiber sound absorber with porous layer backing and perforated panel. American Journal of Applied Sciences, 7: 260-264.
  • Ryu, Y., Choi, M. R. (2004). Transmission Loss Measurement of the Exhaust system using 4-microphones with impedance tube. In 18th International Congress on Acoustics, Kyoto.
  • Schmidt, A. C., Jensen, A. A., Clausen, A. U., Kamstrup, O., Postlethwaite, D. (2004). A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax. The International Journal of Life Cycle Assessment, 9: 53-66.
  • Uzundağ, U., Tandoğan, O. (2011). Malzemelerin akustik performans testleri, Novasim, 1-13.
  • http://www.yapı.com.tr (Erişim tarihi:23.01.2017)

Acoustic Properties of Natural Fibers for Sound Insulation

Year 2017, Volume: 8 Issue: Özel (Special) 1, 25 - 37, 02.07.2017

Abstract

Technological developments have
also brought noise problem. Noise control has become one of the most important
requirements to improve the quality of life. Petroleum-derived materials are
widely used to prevent noise. Considering the adverse effects of
petroleum-based materials on nature, finding and developing new materials as alternatives
to these chemical materials become a necessity in practice.
Natural fibers provide a great advantage because they are
renewable, inexpensive, domestic, abundant and environmentally friendly when
evaluated in terms of sound insulation. İn this study,acoustic properties of
wood fiber, kenaf, hemp, coconut, palm fiber, tea-leaf fibre, luffa fiber,
sheep wool are summarized. Especially, this paper focus on acoustic behavior at
125Hz, 250Hz, 500Hz, 1000Hz, 2000Hz, 4000Hz frequencies. The results are within
acceptable limits at the indicated frequencies. İt has been found that both the
physical properties of natural fibers increased and the acoustic properties
increased within certain limits.

References

  • Arenas, J. P., Crocker, M. J. (2010). Recent trends in porous sound-absorbing materials. Sound & Vibration 44: 12-18.
  • Asdrubali, F. (2006). Survey on the acoustical properties of new sustainable materials for noise control. Proceedings of Euronoise, Tampere, Finland.
  • BAKA (2012). Batı Akdeniz Kalkınma Ajansı. Orman ve Orman Ürünleri Sektör Raporu. https://www.baka.org.tr/uploads/1357649370ORMAN-URUNLERi-RAPORU-12ARALiK.pdf (Erişim tarihi:10.02.2017)
  • Ballagh, K. O. (1996). Acoustical properties of wool. Applied Acoustics, 48: 101-120.
  • Berardi, U., Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94: 840-852.
  • Bribián, I. Z., Capilla, A. V., Usón, A. A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46: 1133-1140.
  • Bruel and Kjaer, Brüel and Kjaer Impedance Tube product data type 7758. Brochure using 4- microphones with impedance tube, Bruel and Kjaer Sound and Vibration Measurement. Denmark Brüel&Kjær Application Note BO 0113-11. https://www.bksv.com/en/Applications/product-noise/Acoustic-material-testing (Erişim tarihi:03.02.2017)
  • Chandramohan, D., Marimuthu, K. (2011). A review on natural fibers. International Journal of Research and Reviews in Applied Sciences, 8: 194-206.
  • Huang, C., Nutt, S. (2009). Sound transmission prediction by 3-D elasticity theory. Applied Acoustics, 70: 730-736.
  • Çalışkan, M. (2011). Ses yalıtımı. 4DuvarKnauf 41: 26-30.
  • D.J. Oldham, C. Egan, R. Cookson. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72: 350-363.
  • DeBenedetti, B., Maffia, L., Rossi, S. (2007). From materials to eco-materials: life-cycle environmental approach for insulation products in building applications. Proceedings of the 8th International Conference of Eco-Materials, Brunel University, UK.
  • Demir, H., Top, A., Balköse, D., Ülkü, S. (2008). Dye adsorption behavior of Luffa cylindrica fibers. Journal of Hazardous Materials 153: 389-394
  • Dempsey, J. M. (1975). Hemp Fiber Crops. Univ. Presses of Florida, Gainesville, Florida, USA.
  • Dias, T., Monaragala, R., Needham, P., Lay, E. (2007). Analysis of sound absorption of tuck spacer fabrics to reduce automotive noise. Measurement Science and Technology, 18: 2657-2666.
  • Elwaleed, A. K., Nikabdullah, N., Nor, M. J., Tahir, M. F., Nuawi, M. Z., Abakr, Y. A. (2014). Experimental study on the effect of compression on the sound absorption of date palm fibers. World Applied Sciences Journal, 31: 40-44.
  • Ersoy, S., Küçük, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70: 215-220.
  • Everest, F. A., Pohlmann, K. C., Books, T. (2001). The Master Handbook of Acoustics. McGraw-Hill, New York.
  • Glé, P., Gourdon, E., Arnaud, L. (2011). Acoustical properties of materials made of vegetable particles with several scales of porosity. Applied Acoustics, 72: 249-259.
  • Heed, C. (2008). Sound Absorption and Acoustic Surface Impedance. Stockholm, Sweden.
  • Kaya, A. İ. (2016). Kompozit malzemeler ve özellikleri. Putech & Composite Poliüretan ve Kompozit Sanayi Dergisi 29: 38-45.
  • Kaya, A. İ. (2015). Atık Kağıtlardan Geri Kazanılmış Liflerden Kompozit Malzeme Üretim Olanaklarının Araştırılması. Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Orman Mühendisliği Anabilim Dalı, Isparta.
  • Khristova, P., Kordsachia, O., Khider, T. (2005). Alkaline pulping with additives of date palm rachis and leaves from Sudan. Bioresource Technology 96: 79-85.
  • Kinnane, O., Reilly, A., Grimes, J., Pavia, S., Walker, R. (2016). Acoustic absorption of hemp-lime construction. Construction and Building Materials 122: 674-682.
  • http://www.kisi.deu.edu.tr/userweb/abdullah.secgin/ (Erişim tarihi:15.03.2017)
  • Koruk, H., Genç, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters 157: 166-168.
  • Kuroda, K. (2006). International development and standardisation of environmental information indices of materials. Proceedings of the 7th International Conference on EcoBalance-EcoBalance2006, sect. E1 -1 - 14-16 November 2006, Tsukuba, Japan.
  • http://www.marmatek.com/akustik-empedans-tupu-kundts-tube/ (Erişim tarihi:23.03.2017)
  • Nielsen T. Q. A Powerful Combination for Building Acoustics Measurements. Brüel&Kjær Application Note BO 0113-11.
  • Putra, A., Abdullah, Y., Efendy, H., Mohamad, W. M. F. W., Salleh, N. L. (2013). Biomass from paddy waste fibers as sustainable acoustic material. Advances in Acoustics and Vibration 2013:1-7.
  • http://www.risk akademi.com (Erişim tarihi:12.02.2017)
  • Rozli, Z., Zulkarnain, Z. (2010). Noise control using coconut coir fiber sound absorber with porous layer backing and perforated panel. American Journal of Applied Sciences, 7: 260-264.
  • Ryu, Y., Choi, M. R. (2004). Transmission Loss Measurement of the Exhaust system using 4-microphones with impedance tube. In 18th International Congress on Acoustics, Kyoto.
  • Schmidt, A. C., Jensen, A. A., Clausen, A. U., Kamstrup, O., Postlethwaite, D. (2004). A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax. The International Journal of Life Cycle Assessment, 9: 53-66.
  • Uzundağ, U., Tandoğan, O. (2011). Malzemelerin akustik performans testleri, Novasim, 1-13.
  • http://www.yapı.com.tr (Erişim tarihi:23.01.2017)
There are 36 citations in total.

Details

Subjects Engineering
Journal Section MESTEK 2017
Authors

Ali İhsan Kaya

Tuncer Dalgar This is me

Publication Date July 2, 2017
Acceptance Date June 5, 2017
Published in Issue Year 2017 Volume: 8 Issue: Özel (Special) 1

Cite

APA Kaya, A. İ., & Dalgar, T. (2017). Ses Yalıtımı Açısından Doğal Liflerin Akustik Özellikleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(Özel (Special) 1), 25-37.