BibTex RIS Cite

Enerji Verimliliği İçin Tren Direnci Formüllerinin Karşılaştırılması

Year 2017, Volume: 8 Issue: Özel (Special) 1, 112 - 126, 02.07.2017

Abstract

Trenler bölgeler arasında ulaşımı sağlarken farklı koşullar ile
karşılaşırlar. Seyir, rampa, kurp ve hızlanma durumları belirli ölçülerde
dirençlere yol açar. Hareketin devamlılığının sağlanması meydana gelen dirençlerin
üstesinden gelmeye bağlıdır. Bu dirençlerin üstesinden gelebilmek için uygun
şekilde uygulanabilecek kuvvetlere gereksinim vardır. Kuvvetin temini enerji
tüketilerek meydana getirilir. Ortaya çıkan dirençlerin doğru hesaplanması ve önlemler
alınarak azaltılması ile enerji tüketimi azaltılabilir. Trenlerde enerji
verimliliğine yönelik çalışmalar öncelikle tren direncinin farklı koşullar için
doğru olarak hesaplanması ile mümkündür. Bu çalışmada literatürde bulunan,
pratikte kullanılan, geçmişten günümüze geliştirilen tren direnci formülleri verilmiştir.
Her bir tren direnci formülü ile hesaplama yapılmıştır. Elde edilen değerler
karşılaştırılmıştır. Enerji verimliliği ve tren çekeri hesaplamaları için
mevcut formüllerden bazılarının kullanımı önerilmiştir. 

References

  • AREMA Manual for Railway Engineering, Economics of Railway Engineering and Operation, Train Performance. (1999). American Railway Engineering and Maintenance of Way Association.
  • Davis, W. J. (1926). The Tractive Resistance of Electric Locomotives and Cars. Schenectady, N.Y. General Electric.
  • DE 37000 Lokomotif Yük Hız Rampa Eğrisi. (2011, June 30). General Electric Company.
  • Dynamometer car. (2017, February 7). In Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Dynamometer_car&oldid=764155907
  • E 68000 Cer Eğrileri ve İşletme Simülasyonları. (n.d.). Hyundai Rotem.
  • Hay, W. W. (1982). Railroad engineering (2nd ed). New York: Wiley.
  • Iwnicki, S. (Ed.). (2006). Handbook of railway vehicle dynamics. Boca Raton: CRC/Taylor & Francis.
  • Lagos, M. (2011, May). CATO Offers Energy Savings. Railway Gazette International.
  • Lindgreen, E., & Spencer C., S. (2005). Driving Resistance From Rialroad Trains (No. MEK-ET 2005 – 03). Technical University of Denmark.
  • Locomotive and Train Resistance | 5AT Advanced Steam Locomotive Project. (n.d.). Retrieved 26 April 2017, from http://5at.co.uk/index.php/definitions/terrms-and-definitions/resistance.html#Plots
  • Lukaszewicz, P. (2007). Running resistance - results and analysis of full-scale tests with passenger and freight trains in Sweden. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 183–192. https://doi.org/10.1243/0954409JRRT89
  • Lukaszewicz, Piotr. (2001). Energy Consumption and Running Time for Trains (Doctoral Thesis). Department of Vehicle Engineering Royal Institute of Technology, Stockholm.
  • Lukaszewicz, Piotr. (2007). Running Resistance of Ore trains in Sweden (pp. 111–120). Presented at the High Tech in Heavy Haul 2007.
  • Lukaszewicz, Piotr. (2009). Running resistance and energy consumption of ore trains in Sweden. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(2), 189–197. https://doi.org/10.1243/09544097JRRT233
  • Nawaz, M. U. (2015). Estimation of Running Resistance in Train Tunnels. Norwegian University of Science and Technology.
  • Pritchard, J. (2013). Investigating The Operatıonal Energy Consumption of a Train–Understanding The Factors Which Affect It, And The Potential of Rail to be A Sustainable Mode of Transport. Presented at the 13th WCTR, Rio de Janeiro, Brazil.
  • Radosavljevic, A. (2006). Measurement of train traction characteristics. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 220(3), 283–291. https://doi.org/10.1243/09544097JRRT40
  • Radosavljevic, A., Milutinovic, D., Jovanovic, R., & Lucanin, V. (2003). Experimental determination of mixed freight train running resistance and influence on energy consumption. Presented at the World Congress on Railway Research (WCRR) 2003, Edinburgh, UK.
  • Rail Resistance Equations, CEE 3604, Rail Transportation: Addendum. (n.d.). Transportation Engineering (A.A. Trani), VirginiaTech.
  • Rangelov, V. N. (2012). Gradient modelling with calibrated train performance models (pp. 123–134). https://doi.org/10.2495/CR120111
  • Rochard, B. P., & Schmid, F. (2000). A review of methods to measure and calculate train resistances. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 214(4), 185–199. https://doi.org/10.1243/0954409001531306
  • Schmidt, E. C. (1910). Freight Train Resistance. Its Relation to Car Weight. Vol. 43 of Engineering Experiment Station Illinois University, Urbana, Illinois.
  • Şebekemizdeki Lokomotif Tiplerine Göre; Hamule (Yük) Çekerleri ile Koşum Takımı Çekerlerini Gösterir Tablolar. (2009). TCDD Tesisler Dairesi Başkanlığı Orer Şubesi.
  • Steimel, A. (2008). Electric traction - motive power and energy supply: basics and practical Experience. München: Oldenbourg Industrieverl.
  • Strahl, G. (1913). Verfahren zur Bestimmung der Belastungsgrenzen der Dampflokomotiven. Z. Des. Vereins Dtsch. Ing. 57, 251.
  • Szanto, F. (2016). Rolling Resistance Revisited. Presented at the CORE2016 Conference on Railway Excellence RTSA.
  • Tuthill, J. K. (1948). High Speed Freight Train Resistance: Its Relations to Average Car Weight. University of Illinois Engineering Experiment Station, Vol. 45, No.32, Bulletin Series 376, Urbana.
  • Urlu, C. (1999). Demiryolu Araçlarının İleri Dinamiği. Ankara: TCDD Yayınları.

Comparison of Train Resistance Formulas for Energy Efficiency

Year 2017, Volume: 8 Issue: Özel (Special) 1, 112 - 126, 02.07.2017

Abstract

Trains encounter different
conditions while they provide transportation between regions. Running, grade,
curve and acceleration
situations lead to certain degrees of resistance. Ensuring
the continuity of the train movement depend on overcoming the resistances.
Force is required to encounter these resistances. Force is generated with
energy consumption. Energy consumption can be reduced by correct calculation of
resistances and precautions.
Studies on energy efficiency of trains are primarily
possible with correctly calculation train resistance for different conditions.
In this study, train resistance formulas in the literature,
used in practice and developed from the past to present are reviewed. Each
train resistance formula is evaluated. The values obtained are compared. The
use of some of the available formulas for energy efficiency and train draw
calculations has been proposed.

References

  • AREMA Manual for Railway Engineering, Economics of Railway Engineering and Operation, Train Performance. (1999). American Railway Engineering and Maintenance of Way Association.
  • Davis, W. J. (1926). The Tractive Resistance of Electric Locomotives and Cars. Schenectady, N.Y. General Electric.
  • DE 37000 Lokomotif Yük Hız Rampa Eğrisi. (2011, June 30). General Electric Company.
  • Dynamometer car. (2017, February 7). In Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Dynamometer_car&oldid=764155907
  • E 68000 Cer Eğrileri ve İşletme Simülasyonları. (n.d.). Hyundai Rotem.
  • Hay, W. W. (1982). Railroad engineering (2nd ed). New York: Wiley.
  • Iwnicki, S. (Ed.). (2006). Handbook of railway vehicle dynamics. Boca Raton: CRC/Taylor & Francis.
  • Lagos, M. (2011, May). CATO Offers Energy Savings. Railway Gazette International.
  • Lindgreen, E., & Spencer C., S. (2005). Driving Resistance From Rialroad Trains (No. MEK-ET 2005 – 03). Technical University of Denmark.
  • Locomotive and Train Resistance | 5AT Advanced Steam Locomotive Project. (n.d.). Retrieved 26 April 2017, from http://5at.co.uk/index.php/definitions/terrms-and-definitions/resistance.html#Plots
  • Lukaszewicz, P. (2007). Running resistance - results and analysis of full-scale tests with passenger and freight trains in Sweden. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 183–192. https://doi.org/10.1243/0954409JRRT89
  • Lukaszewicz, Piotr. (2001). Energy Consumption and Running Time for Trains (Doctoral Thesis). Department of Vehicle Engineering Royal Institute of Technology, Stockholm.
  • Lukaszewicz, Piotr. (2007). Running Resistance of Ore trains in Sweden (pp. 111–120). Presented at the High Tech in Heavy Haul 2007.
  • Lukaszewicz, Piotr. (2009). Running resistance and energy consumption of ore trains in Sweden. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(2), 189–197. https://doi.org/10.1243/09544097JRRT233
  • Nawaz, M. U. (2015). Estimation of Running Resistance in Train Tunnels. Norwegian University of Science and Technology.
  • Pritchard, J. (2013). Investigating The Operatıonal Energy Consumption of a Train–Understanding The Factors Which Affect It, And The Potential of Rail to be A Sustainable Mode of Transport. Presented at the 13th WCTR, Rio de Janeiro, Brazil.
  • Radosavljevic, A. (2006). Measurement of train traction characteristics. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 220(3), 283–291. https://doi.org/10.1243/09544097JRRT40
  • Radosavljevic, A., Milutinovic, D., Jovanovic, R., & Lucanin, V. (2003). Experimental determination of mixed freight train running resistance and influence on energy consumption. Presented at the World Congress on Railway Research (WCRR) 2003, Edinburgh, UK.
  • Rail Resistance Equations, CEE 3604, Rail Transportation: Addendum. (n.d.). Transportation Engineering (A.A. Trani), VirginiaTech.
  • Rangelov, V. N. (2012). Gradient modelling with calibrated train performance models (pp. 123–134). https://doi.org/10.2495/CR120111
  • Rochard, B. P., & Schmid, F. (2000). A review of methods to measure and calculate train resistances. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 214(4), 185–199. https://doi.org/10.1243/0954409001531306
  • Schmidt, E. C. (1910). Freight Train Resistance. Its Relation to Car Weight. Vol. 43 of Engineering Experiment Station Illinois University, Urbana, Illinois.
  • Şebekemizdeki Lokomotif Tiplerine Göre; Hamule (Yük) Çekerleri ile Koşum Takımı Çekerlerini Gösterir Tablolar. (2009). TCDD Tesisler Dairesi Başkanlığı Orer Şubesi.
  • Steimel, A. (2008). Electric traction - motive power and energy supply: basics and practical Experience. München: Oldenbourg Industrieverl.
  • Strahl, G. (1913). Verfahren zur Bestimmung der Belastungsgrenzen der Dampflokomotiven. Z. Des. Vereins Dtsch. Ing. 57, 251.
  • Szanto, F. (2016). Rolling Resistance Revisited. Presented at the CORE2016 Conference on Railway Excellence RTSA.
  • Tuthill, J. K. (1948). High Speed Freight Train Resistance: Its Relations to Average Car Weight. University of Illinois Engineering Experiment Station, Vol. 45, No.32, Bulletin Series 376, Urbana.
  • Urlu, C. (1999). Demiryolu Araçlarının İleri Dinamiği. Ankara: TCDD Yayınları.
There are 28 citations in total.

Details

Journal Section MESTEK 2017
Authors

Ömür Akbayır

Fatih Hayati Çakır

Publication Date July 2, 2017
Acceptance Date June 8, 2017
Published in Issue Year 2017 Volume: 8 Issue: Özel (Special) 1

Cite

APA Akbayır, Ö., & Çakır, F. H. (2017). Enerji Verimliliği İçin Tren Direnci Formüllerinin Karşılaştırılması. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(Özel (Special) 1), 112-126.