Review
BibTex RIS Cite

Perovskite Solar Cells and Instability Problems

Year 2018, Volume: 9 Issue: Ek (Suppl.) 1, 297 - 304, 14.12.2018
https://doi.org/10.29048/makufebed.428570

Abstract

It is a necessity for our generations to produce
electricity in a sustainable form that does not damage nature. In this context,
renewable energy sources are a sustainable resource. The most potentially high
source of renewable energy sources is the sun. The most commonly studied solar
cells in the literature are silicon-based solar cells. However, the production
of silicon-based solar cells is difficult and costly. To overcome these
obstacles, it is seen that studies have been made on organic solar cells in the
literature. However, the Power Conversion Efficiency (PCE) values are very low
compared to the silicon-based solar cells in the organic solar cells market. At
the same time, organic-based solar cells are more unstable compared to
silicon-based solar cells. One of the important issues that continue to be
studied in the organic solar cell family literature is Perovskite solar cells.
Perovskite solar cells have become comparable to silicon-based cells by passing
~ 20% of the PCE value in a very short time (~ 2015) from their initial
production (~ 2009). However, Perovskite encounters a problem of instability
after solar cell production. Perovskite, an easy-to-produce, cost-effective and
environmentally friendly product, is a potentially high-value material to
become a commercial solar cell in the future after the problems of instability
in solar cells have been overcome. This study consists of a compilation of the
studies published in the literature on the problems of instability especially
during the period from the first production of Perovskite solar cells to the
present day.

References

  • Bednorz, J. G. and K. A. Müller. 1986. “Possible High T c Superconductivity in the Ba — La — Cu — O System.” 193:267–71. Retrieved (http://link.springer.com/10.1007/978-94-011-1622-0_32).Bella, Federico, Claudio Gerbaldi, Claudia Barolo, and Michael Grätzel. 2015. “Aqueous Dye-Sensitized Solar Cells.” Chem. Soc. Rev. 44(11):3431–73. Retrieved (http://xlink.rsc.org/?DOI=C4CS00456F).
  • Bi, Cheng et al. 2014. “Understanding the Formation and Evolution of Interdiffusion Grown Organolead Halide Perovskite Thin Films by Thermal Annealing.” J. Mater. Chem. A 2(43):18508–14. Retrieved (http://xlink.rsc.org/?DOI=C4TA04007D).
  • Bisquert, Juan et al. 2008. “A Review of Recent Results on Electrochemical Determination of the Density of Electronic States of Nanostructured Metal-Oxide Semiconductors and Organic Hole Conductors.” Inorganica Chimica Acta 361(3):684–98.
  • Christians, Jeffrey A., Pierre A. Miranda Herrera, and Prashant V. Kamat. 2015. “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air.” Journal of the American Chemical Society 137(4):1530–38.
  • Etgar, Lioz et al. 2012. “Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells.” Journal of the American Chemical Society 134(42):17396–99. Retrieved (http://pubs.acs.org/doi/10.1021/ja307789s).
  • Frost, Jarvist M. et al. 2014. “Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells.” Nano Letters 14(5):2584–90. Retrieved (http://pubs.acs.org/doi/10.1021/nl500390f).
  • Green, Martin A. et al. 2018. “Solar Cell Efficiency Tables (Version 51).” Progress in Photovoltaics: Research and Applications 26(1):3–12.
  • Green, Martin A., Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop. 2015. “Solar Cell Efficiency Tables (Version 45).” Progress in Photovoltaics: Research and Applications 23(1):1–9. Retrieved (http://doi.wiley.com/10.1002/pip.2573).
  • Green, Martin A., Anita Ho-Baillie, and Henry J. Snaith. 2014. “The Emergence of Perovskite Solar Cells.” Nature Photonics 8(7):506–14. Retrieved (http://www.nature.com/articles/nphoton.2014.134).
  • Hinsch, A. et al. 2001. “Long-Term Stability of Dye-Sensitised Solar Cells.” Progress in Photovoltaics: Research and Applications 9(6):425–38.
  • Im, Jeong-Hyeok, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park, and Nam-Gyu Park. 2011a. “6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell.” Nanoscale 3(10):4088. Retrieved (http://xlink.rsc.org/?DOI=c1nr10867k).
  • Jeon, Nam Joong et al. 2015. “Compositional Engineering of Perovskite Materials for High-Performance Solar Cells.” Nature 517(7535):476–80. Retrieved (http://dx.doi.org/10.1038/nature14133).
  • Jørgensen, Mikkel, Kion Norrman, and Frederik C. Krebs. 2008. “Stability/Degradation of Polymer Solar Cells.” Solar Energy Materials and Solar Cells 92(7):686–714.
  • Kim, Hui Seon et al. 2012. “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Scientific Reports 2:1–7.
  • Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. 2009. “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells.” Journal of the American Chemical Society 131(17):6050–51. Retrieved (http://pubs.acs.org/doi/abs/10.1021/ja809598r).
  • Lee, Jin-Wook and Nam-Gyu Park. 2015. “Two-Step Deposition Method for High-Efficiency Perovskite Solar Cells.” MRS Bulletin 40(August):654.
  • Lee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith. 2012. “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites.” Science 338(6107):643–47. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1225053).
  • Leijtens, Tomas et al. 2013. “Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells.” Nature Communications 4:1–8. Retrieved (http://www.nature.com/doifinder/10.1038/ncomms3885).
  • Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. 2013. “Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition.” Nature 501(7467):395–98. Retrieved (http://dx.doi.org/10.1038/nature12509).
  • Mei, Anyi et al. 2014. “A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability.” Science 345(6194):295–98. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1254763).
  • Mitzi, D. B., C. A. Feild, W. T. A. Harrison, and A. M. Guloy. 1994. “Conducting Tin Halides with a Layered Organic-Based Perovskite Structure.” Nature 369(6480):467–69. Retrieved (http://www.nature.com/doifinder/10.1038/369467a0).
  • Mitzi, David B. 2001. “Thin-Film Deposition of Organic−Inorganic Hybrid Materials.” Chemistry of Materials 13(10):3283–98. Retrieved (http://pubs.acs.org/doi/abs/10.1021/cm0101677).
  • Noh, Jun Hong, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok. 2013. “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells.” Nano Letters 13(4):1764–69. Retrieved (http://pubs.acs.org/doi/10.1021/nl400349b).
  • Salado, Manuel et al. 2017. “Impact of Moisture on Efficiency-Determining Electronic Processes in Perovskite Solar Cells.” J. Mater. Chem. A 5(22):10917–27. Retrieved (http://xlink.rsc.org/?DOI=C7TA02264F).
  • Schwanitz, Konrad, Ulrich Weiler, Ralf Hunger, Thomas Mayer, and Wolfram Jaegermann. 2007. “Synchrotron-Induced Photoelectron Spectroscopy of the Dye-Sensitized Nanocrystalline TiO 2 /Electrolyte Interface: Band Gap States and Their Interaction with Dye and Solvent Molecules.” The Journal of Physical Chemistry C 111(2):849–54. Retrieved (http://pubs.acs.org/doi/abs/10.1021/jp064689r).
  • Suarez, Belen et al. 2014. “Supporting Information: Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells.” J. Phys. Chem. Lett. 5(10):1628–35. Retrieved (http://pubs.acs.org/doi/abs/10.1021/jz5006797).
  • Xing, Guichuan et al. 2013. “Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3.” Science 342(6156):344–47. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1243167).
  • Yang, Jinli, Braden D. Siempelkamp, Dianyi Liu, and Timothy L. Kelly. 2015. “Investigation of CH3NH3PbI3degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques.” ACS Nano 9(2):1955–63.
  • Zhihua Xu, Kevin Weeks, Taryn De Rosia. n.d. “Perovskite Solar Cells.” Retrieved (https://pdfs.semanticscholar.org/presentation/928b/f102a912a067a6361ebb6bbdf983b2df7af8.pdf).
  • Zhou, Huawei et al. 2014. “Hole-Conductor-Free, Metal-Electrode-Free TiO 2 /CH 3 NH 3 PbI 3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode.” The Journal of Physical Chemistry Letters 5(18):3241–46. Retrieved (http://pubs.acs.org/doi/10.1021/jz5017069).

Perovskit Güneş Hücreleri ve Kararsızlık Problemleri

Year 2018, Volume: 9 Issue: Ek (Suppl.) 1, 297 - 304, 14.12.2018
https://doi.org/10.29048/makufebed.428570

Abstract

Elektrik enerjisinin doğaya zarar vermeden ve
sürdürülebilir bir formda üretimini sağlamak gelecek nesillerimiz için bir
zorunluluktur. Bu bağlamda yenilenebilir enerji kaynakları sürdürülebilir bir
kaynaktır. Yenilenebilir enerji kaynakları arasında en potansiyeli yüksek
kaynak ise güneştir. Literatürde en yaygın olarak çalışılan güneş hücreleri ise
Silisyum tabanlı güneş hücreleridir. Ancak Silisyum tabanlı güneş hücrelerinin
üretimi zor ve maliyetlidir. Bu olumsuzlukları ortadan kaldırmak için
literatürde organik güneş hücreleri üzerine çalışmalar yapıldığı görülmektedir.
Ancak organik güneş hücrelerinin piyasada bulunan Silisyum tabanlı güneş
hücrelerine göre Güç Enerji Dönüşümü (PCE) değerleri çok düşüktür. Aynı zamanda
organik tabanlı güneş hücreleri silisyum tabanlı güneş hücreleri ile
karşılaştırıldığında daha kararsız olduğu gözlenmektedir. Organik güneş hücresi
ailesi literatüründe üzerine çalışmalar yapılmaya devam edilmekte olan önemli
konulardan birisi de Perovskit güneş hücreleridir. Perovskit güneş hücreleri
ilk üretimlerinden (~2009) çok kısa bir zaman sonrasında (~2015) PCE değeri
~%20’leri geçerek silisyum tabanlı hücreler ile karşılaştırılabilir duruma
gelmiştir. Ancak Perovskit güneş hücresi üretimden sonra kararsızlık problemi
yaşamaktadır. Üretimi kolay, maliyeti düşük ve doğa dostu bir ürün olan
Perovskit güneş hücreleri kararsızlık problemlerinin aşılmasından sonra
gelecekte ticari güneş hücresi olma potansiyeli yüksek bir malzemedir. Bu
çalışmada Perovskit güneş hücrelerinin ilk üretiminden günümüze kadar geçen
sürede özellikle kararsızlık problemleri üzerine literatürde yayınlanan
çalışmaların bir derlemesi hazırlanmıştır.

References

  • Bednorz, J. G. and K. A. Müller. 1986. “Possible High T c Superconductivity in the Ba — La — Cu — O System.” 193:267–71. Retrieved (http://link.springer.com/10.1007/978-94-011-1622-0_32).Bella, Federico, Claudio Gerbaldi, Claudia Barolo, and Michael Grätzel. 2015. “Aqueous Dye-Sensitized Solar Cells.” Chem. Soc. Rev. 44(11):3431–73. Retrieved (http://xlink.rsc.org/?DOI=C4CS00456F).
  • Bi, Cheng et al. 2014. “Understanding the Formation and Evolution of Interdiffusion Grown Organolead Halide Perovskite Thin Films by Thermal Annealing.” J. Mater. Chem. A 2(43):18508–14. Retrieved (http://xlink.rsc.org/?DOI=C4TA04007D).
  • Bisquert, Juan et al. 2008. “A Review of Recent Results on Electrochemical Determination of the Density of Electronic States of Nanostructured Metal-Oxide Semiconductors and Organic Hole Conductors.” Inorganica Chimica Acta 361(3):684–98.
  • Christians, Jeffrey A., Pierre A. Miranda Herrera, and Prashant V. Kamat. 2015. “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air.” Journal of the American Chemical Society 137(4):1530–38.
  • Etgar, Lioz et al. 2012. “Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells.” Journal of the American Chemical Society 134(42):17396–99. Retrieved (http://pubs.acs.org/doi/10.1021/ja307789s).
  • Frost, Jarvist M. et al. 2014. “Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells.” Nano Letters 14(5):2584–90. Retrieved (http://pubs.acs.org/doi/10.1021/nl500390f).
  • Green, Martin A. et al. 2018. “Solar Cell Efficiency Tables (Version 51).” Progress in Photovoltaics: Research and Applications 26(1):3–12.
  • Green, Martin A., Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop. 2015. “Solar Cell Efficiency Tables (Version 45).” Progress in Photovoltaics: Research and Applications 23(1):1–9. Retrieved (http://doi.wiley.com/10.1002/pip.2573).
  • Green, Martin A., Anita Ho-Baillie, and Henry J. Snaith. 2014. “The Emergence of Perovskite Solar Cells.” Nature Photonics 8(7):506–14. Retrieved (http://www.nature.com/articles/nphoton.2014.134).
  • Hinsch, A. et al. 2001. “Long-Term Stability of Dye-Sensitised Solar Cells.” Progress in Photovoltaics: Research and Applications 9(6):425–38.
  • Im, Jeong-Hyeok, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park, and Nam-Gyu Park. 2011a. “6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell.” Nanoscale 3(10):4088. Retrieved (http://xlink.rsc.org/?DOI=c1nr10867k).
  • Jeon, Nam Joong et al. 2015. “Compositional Engineering of Perovskite Materials for High-Performance Solar Cells.” Nature 517(7535):476–80. Retrieved (http://dx.doi.org/10.1038/nature14133).
  • Jørgensen, Mikkel, Kion Norrman, and Frederik C. Krebs. 2008. “Stability/Degradation of Polymer Solar Cells.” Solar Energy Materials and Solar Cells 92(7):686–714.
  • Kim, Hui Seon et al. 2012. “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Scientific Reports 2:1–7.
  • Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. 2009. “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells.” Journal of the American Chemical Society 131(17):6050–51. Retrieved (http://pubs.acs.org/doi/abs/10.1021/ja809598r).
  • Lee, Jin-Wook and Nam-Gyu Park. 2015. “Two-Step Deposition Method for High-Efficiency Perovskite Solar Cells.” MRS Bulletin 40(August):654.
  • Lee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith. 2012. “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites.” Science 338(6107):643–47. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1225053).
  • Leijtens, Tomas et al. 2013. “Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells.” Nature Communications 4:1–8. Retrieved (http://www.nature.com/doifinder/10.1038/ncomms3885).
  • Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. 2013. “Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition.” Nature 501(7467):395–98. Retrieved (http://dx.doi.org/10.1038/nature12509).
  • Mei, Anyi et al. 2014. “A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability.” Science 345(6194):295–98. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1254763).
  • Mitzi, D. B., C. A. Feild, W. T. A. Harrison, and A. M. Guloy. 1994. “Conducting Tin Halides with a Layered Organic-Based Perovskite Structure.” Nature 369(6480):467–69. Retrieved (http://www.nature.com/doifinder/10.1038/369467a0).
  • Mitzi, David B. 2001. “Thin-Film Deposition of Organic−Inorganic Hybrid Materials.” Chemistry of Materials 13(10):3283–98. Retrieved (http://pubs.acs.org/doi/abs/10.1021/cm0101677).
  • Noh, Jun Hong, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok. 2013. “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells.” Nano Letters 13(4):1764–69. Retrieved (http://pubs.acs.org/doi/10.1021/nl400349b).
  • Salado, Manuel et al. 2017. “Impact of Moisture on Efficiency-Determining Electronic Processes in Perovskite Solar Cells.” J. Mater. Chem. A 5(22):10917–27. Retrieved (http://xlink.rsc.org/?DOI=C7TA02264F).
  • Schwanitz, Konrad, Ulrich Weiler, Ralf Hunger, Thomas Mayer, and Wolfram Jaegermann. 2007. “Synchrotron-Induced Photoelectron Spectroscopy of the Dye-Sensitized Nanocrystalline TiO 2 /Electrolyte Interface: Band Gap States and Their Interaction with Dye and Solvent Molecules.” The Journal of Physical Chemistry C 111(2):849–54. Retrieved (http://pubs.acs.org/doi/abs/10.1021/jp064689r).
  • Suarez, Belen et al. 2014. “Supporting Information: Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells.” J. Phys. Chem. Lett. 5(10):1628–35. Retrieved (http://pubs.acs.org/doi/abs/10.1021/jz5006797).
  • Xing, Guichuan et al. 2013. “Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3.” Science 342(6156):344–47. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1243167).
  • Yang, Jinli, Braden D. Siempelkamp, Dianyi Liu, and Timothy L. Kelly. 2015. “Investigation of CH3NH3PbI3degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques.” ACS Nano 9(2):1955–63.
  • Zhihua Xu, Kevin Weeks, Taryn De Rosia. n.d. “Perovskite Solar Cells.” Retrieved (https://pdfs.semanticscholar.org/presentation/928b/f102a912a067a6361ebb6bbdf983b2df7af8.pdf).
  • Zhou, Huawei et al. 2014. “Hole-Conductor-Free, Metal-Electrode-Free TiO 2 /CH 3 NH 3 PbI 3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode.” The Journal of Physical Chemistry Letters 5(18):3241–46. Retrieved (http://pubs.acs.org/doi/10.1021/jz5017069).
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Paper
Authors

Gökhan Yılmaz 0000-0003-0834-9736

Çağlar Özkök This is me

Publication Date December 14, 2018
Acceptance Date August 8, 2018
Published in Issue Year 2018 Volume: 9 Issue: Ek (Suppl.) 1

Cite

APA Yılmaz, G., & Özkök, Ç. (2018). Perovskit Güneş Hücreleri ve Kararsızlık Problemleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(Ek (Suppl.) 1), 297-304. https://doi.org/10.29048/makufebed.428570