Perovskit Güneş Hücreleri ve Kararsızlık Problemleri
Perovskite Solar Cells and Instability Problems

Gökhan YILMAZ [1] , Çağlar ÖZKÖK [2]


Elektrik enerjisinin doğaya zarar vermeden ve sürdürülebilir bir formda üretimini sağlamak gelecek nesillerimiz için bir zorunluluktur. Bu bağlamda yenilenebilir enerji kaynakları sürdürülebilir bir kaynaktır. Yenilenebilir enerji kaynakları arasında en potansiyeli yüksek kaynak ise güneştir. Literatürde en yaygın olarak çalışılan güneş hücreleri ise Silisyum tabanlı güneş hücreleridir. Ancak Silisyum tabanlı güneş hücrelerinin üretimi zor ve maliyetlidir. Bu olumsuzlukları ortadan kaldırmak için literatürde organik güneş hücreleri üzerine çalışmalar yapıldığı görülmektedir. Ancak organik güneş hücrelerinin piyasada bulunan Silisyum tabanlı güneş hücrelerine göre Güç Enerji Dönüşümü (PCE) değerleri çok düşüktür. Aynı zamanda organik tabanlı güneş hücreleri silisyum tabanlı güneş hücreleri ile karşılaştırıldığında daha kararsız olduğu gözlenmektedir. Organik güneş hücresi ailesi literatüründe üzerine çalışmalar yapılmaya devam edilmekte olan önemli konulardan birisi de Perovskit güneş hücreleridir. Perovskit güneş hücreleri ilk üretimlerinden (~2009) çok kısa bir zaman sonrasında (~2015) PCE değeri ~%20’leri geçerek silisyum tabanlı hücreler ile karşılaştırılabilir duruma gelmiştir. Ancak Perovskit güneş hücresi üretimden sonra kararsızlık problemi yaşamaktadır. Üretimi kolay, maliyeti düşük ve doğa dostu bir ürün olan Perovskit güneş hücreleri kararsızlık problemlerinin aşılmasından sonra gelecekte ticari güneş hücresi olma potansiyeli yüksek bir malzemedir. Bu çalışmada Perovskit güneş hücrelerinin ilk üretiminden günümüze kadar geçen sürede özellikle kararsızlık problemleri üzerine literatürde yayınlanan çalışmaların bir derlemesi hazırlanmıştır.

It is a necessity for our generations to produce electricity in a sustainable form that does not damage nature. In this context, renewable energy sources are a sustainable resource. The most potentially high source of renewable energy sources is the sun. The most commonly studied solar cells in the literature are silicon-based solar cells. However, the production of silicon-based solar cells is difficult and costly. To overcome these obstacles, it is seen that studies have been made on organic solar cells in the literature. However, the Power Conversion Efficiency (PCE) values are very low compared to the silicon-based solar cells in the organic solar cells market. At the same time, organic-based solar cells are more unstable compared to silicon-based solar cells. One of the important issues that continue to be studied in the organic solar cell family literature is Perovskite solar cells. Perovskite solar cells have become comparable to silicon-based cells by passing ~ 20% of the PCE value in a very short time (~ 2015) from their initial production (~ 2009). However, Perovskite encounters a problem of instability after solar cell production. Perovskite, an easy-to-produce, cost-effective and environmentally friendly product, is a potentially high-value material to become a commercial solar cell in the future after the problems of instability in solar cells have been overcome. This study consists of a compilation of the studies published in the literature on the problems of instability especially during the period from the first production of Perovskite solar cells to the present day.

  • Bednorz, J. G. and K. A. Müller. 1986. “Possible High T c Superconductivity in the Ba — La — Cu — O System.” 193:267–71. Retrieved (http://link.springer.com/10.1007/978-94-011-1622-0_32).Bella, Federico, Claudio Gerbaldi, Claudia Barolo, and Michael Grätzel. 2015. “Aqueous Dye-Sensitized Solar Cells.” Chem. Soc. Rev. 44(11):3431–73. Retrieved (http://xlink.rsc.org/?DOI=C4CS00456F).
  • Bi, Cheng et al. 2014. “Understanding the Formation and Evolution of Interdiffusion Grown Organolead Halide Perovskite Thin Films by Thermal Annealing.” J. Mater. Chem. A 2(43):18508–14. Retrieved (http://xlink.rsc.org/?DOI=C4TA04007D).
  • Bisquert, Juan et al. 2008. “A Review of Recent Results on Electrochemical Determination of the Density of Electronic States of Nanostructured Metal-Oxide Semiconductors and Organic Hole Conductors.” Inorganica Chimica Acta 361(3):684–98.
  • Christians, Jeffrey A., Pierre A. Miranda Herrera, and Prashant V. Kamat. 2015. “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air.” Journal of the American Chemical Society 137(4):1530–38.
  • Etgar, Lioz et al. 2012. “Mesoscopic CH 3 NH 3 PbI 3 /TiO 2 Heterojunction Solar Cells.” Journal of the American Chemical Society 134(42):17396–99. Retrieved (http://pubs.acs.org/doi/10.1021/ja307789s).
  • Frost, Jarvist M. et al. 2014. “Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells.” Nano Letters 14(5):2584–90. Retrieved (http://pubs.acs.org/doi/10.1021/nl500390f).
  • Green, Martin A. et al. 2018. “Solar Cell Efficiency Tables (Version 51).” Progress in Photovoltaics: Research and Applications 26(1):3–12.
  • Green, Martin A., Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D. Dunlop. 2015. “Solar Cell Efficiency Tables (Version 45).” Progress in Photovoltaics: Research and Applications 23(1):1–9. Retrieved (http://doi.wiley.com/10.1002/pip.2573).
  • Green, Martin A., Anita Ho-Baillie, and Henry J. Snaith. 2014. “The Emergence of Perovskite Solar Cells.” Nature Photonics 8(7):506–14. Retrieved (http://www.nature.com/articles/nphoton.2014.134).
  • Hinsch, A. et al. 2001. “Long-Term Stability of Dye-Sensitised Solar Cells.” Progress in Photovoltaics: Research and Applications 9(6):425–38.
  • Im, Jeong-Hyeok, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park, and Nam-Gyu Park. 2011a. “6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell.” Nanoscale 3(10):4088. Retrieved (http://xlink.rsc.org/?DOI=c1nr10867k).
  • Jeon, Nam Joong et al. 2015. “Compositional Engineering of Perovskite Materials for High-Performance Solar Cells.” Nature 517(7535):476–80. Retrieved (http://dx.doi.org/10.1038/nature14133).
  • Jørgensen, Mikkel, Kion Norrman, and Frederik C. Krebs. 2008. “Stability/Degradation of Polymer Solar Cells.” Solar Energy Materials and Solar Cells 92(7):686–714.
  • Kim, Hui Seon et al. 2012. “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%.” Scientific Reports 2:1–7.
  • Kojima, Akihiro, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka. 2009. “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells.” Journal of the American Chemical Society 131(17):6050–51. Retrieved (http://pubs.acs.org/doi/abs/10.1021/ja809598r).
  • Lee, Jin-Wook and Nam-Gyu Park. 2015. “Two-Step Deposition Method for High-Efficiency Perovskite Solar Cells.” MRS Bulletin 40(August):654.
  • Lee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith. 2012. “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites.” Science 338(6107):643–47. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1225053).
  • Leijtens, Tomas et al. 2013. “Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells.” Nature Communications 4:1–8. Retrieved (http://www.nature.com/doifinder/10.1038/ncomms3885).
  • Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. 2013. “Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition.” Nature 501(7467):395–98. Retrieved (http://dx.doi.org/10.1038/nature12509).
  • Mei, Anyi et al. 2014. “A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability.” Science 345(6194):295–98. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1254763).
  • Mitzi, D. B., C. A. Feild, W. T. A. Harrison, and A. M. Guloy. 1994. “Conducting Tin Halides with a Layered Organic-Based Perovskite Structure.” Nature 369(6480):467–69. Retrieved (http://www.nature.com/doifinder/10.1038/369467a0).
  • Mitzi, David B. 2001. “Thin-Film Deposition of Organic−Inorganic Hybrid Materials.” Chemistry of Materials 13(10):3283–98. Retrieved (http://pubs.acs.org/doi/abs/10.1021/cm0101677).
  • Noh, Jun Hong, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok. 2013. “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells.” Nano Letters 13(4):1764–69. Retrieved (http://pubs.acs.org/doi/10.1021/nl400349b).
  • Salado, Manuel et al. 2017. “Impact of Moisture on Efficiency-Determining Electronic Processes in Perovskite Solar Cells.” J. Mater. Chem. A 5(22):10917–27. Retrieved (http://xlink.rsc.org/?DOI=C7TA02264F).
  • Schwanitz, Konrad, Ulrich Weiler, Ralf Hunger, Thomas Mayer, and Wolfram Jaegermann. 2007. “Synchrotron-Induced Photoelectron Spectroscopy of the Dye-Sensitized Nanocrystalline TiO 2 /Electrolyte Interface: Band Gap States and Their Interaction with Dye and Solvent Molecules.” The Journal of Physical Chemistry C 111(2):849–54. Retrieved (http://pubs.acs.org/doi/abs/10.1021/jp064689r).
  • Suarez, Belen et al. 2014. “Supporting Information: Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells.” J. Phys. Chem. Lett. 5(10):1628–35. Retrieved (http://pubs.acs.org/doi/abs/10.1021/jz5006797).
  • Xing, Guichuan et al. 2013. “Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3.” Science 342(6156):344–47. Retrieved (http://www.sciencemag.org/cgi/doi/10.1126/science.1243167).
  • Yang, Jinli, Braden D. Siempelkamp, Dianyi Liu, and Timothy L. Kelly. 2015. “Investigation of CH3NH3PbI3degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques.” ACS Nano 9(2):1955–63.
  • Zhihua Xu, Kevin Weeks, Taryn De Rosia. n.d. “Perovskite Solar Cells.” Retrieved (https://pdfs.semanticscholar.org/presentation/928b/f102a912a067a6361ebb6bbdf983b2df7af8.pdf).
  • Zhou, Huawei et al. 2014. “Hole-Conductor-Free, Metal-Electrode-Free TiO 2 /CH 3 NH 3 PbI 3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode.” The Journal of Physical Chemistry Letters 5(18):3241–46. Retrieved (http://pubs.acs.org/doi/10.1021/jz5017069).
Primary Language tr
Subjects Engineering
Journal Section Review Paper
Authors

Orcid: 0000-0003-0834-9736
Author: Gökhan YILMAZ (Primary Author)
Institution: MEHMET AKİF ERSOY ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ
Country: Turkey


Author: Çağlar ÖZKÖK
Institution: MEHMET AKİF ERSOY ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ
Country: Turkey


Dates

Publication Date : December 14, 2018

Bibtex @review { makufebed428570, journal = {Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi}, issn = {}, eissn = {1309-2243}, address = {}, publisher = {Mehmet Akif Ersoy University}, year = {2018}, volume = {9}, pages = {297 - 304}, doi = {10.29048/makufebed.428570}, title = {Perovskit Güneş Hücreleri ve Kararsızlık Problemleri}, key = {cite}, author = {YILMAZ, Gökhan and ÖZKÖK, Çağlar} }
APA YILMAZ, G , ÖZKÖK, Ç . (2018). Perovskit Güneş Hücreleri ve Kararsızlık Problemleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 9 (Ek (Suppl.) 1) , 297-304 . DOI: 10.29048/makufebed.428570
MLA YILMAZ, G , ÖZKÖK, Ç . "Perovskit Güneş Hücreleri ve Kararsızlık Problemleri". Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 (2018 ): 297-304 <https://dergipark.org.tr/en/pub/makufebed/issue/38291/428570>
Chicago YILMAZ, G , ÖZKÖK, Ç . "Perovskit Güneş Hücreleri ve Kararsızlık Problemleri". Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 (2018 ): 297-304
RIS TY - JOUR T1 - Perovskit Güneş Hücreleri ve Kararsızlık Problemleri AU - Gökhan YILMAZ , Çağlar ÖZKÖK Y1 - 2018 PY - 2018 N1 - doi: 10.29048/makufebed.428570 DO - 10.29048/makufebed.428570 T2 - Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 297 EP - 304 VL - 9 IS - Ek (Suppl.) 1 SN - -1309-2243 M3 - doi: 10.29048/makufebed.428570 UR - https://doi.org/10.29048/makufebed.428570 Y2 - 2018 ER -
EndNote %0 Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi Perovskit Güneş Hücreleri ve Kararsızlık Problemleri %A Gökhan YILMAZ , Çağlar ÖZKÖK %T Perovskit Güneş Hücreleri ve Kararsızlık Problemleri %D 2018 %J Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi %P -1309-2243 %V 9 %N Ek (Suppl.) 1 %R doi: 10.29048/makufebed.428570 %U 10.29048/makufebed.428570
ISNAD YILMAZ, Gökhan , ÖZKÖK, Çağlar . "Perovskit Güneş Hücreleri ve Kararsızlık Problemleri". Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 / Ek (Suppl.) 1 (December 2018): 297-304 . https://doi.org/10.29048/makufebed.428570
AMA YILMAZ G , ÖZKÖK Ç . Perovskit Güneş Hücreleri ve Kararsızlık Problemleri. MAKUFEBED. 2018; 9(Ek (Suppl.) 1): 297-304.
Vancouver YILMAZ G , ÖZKÖK Ç . Perovskit Güneş Hücreleri ve Kararsızlık Problemleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018; 9(Ek (Suppl.) 1): 304-297.