Araştırma Makalesi
BibTex RIS Kaynak Göster

Açık Arazi Koşullarında Kızılçam (Pinus brutia Ten.) Tohumlarının Fidan Gelişimi ve Fidan Yüzdesi Üzerine Bazı Nanopartikül Uygulamalarının Etkisi

Yıl 2021, Cilt: 12 Sayı: 2, 278 - 286, 01.12.2021
https://doi.org/10.29048/makufebed.940151

Öz

Nanoteknolojik gelişmelere paralel olarak günümüzde nanopartiküllerin ortamlardaki konsantrasyonları gittikçe artmaktadır. Çevre üzerindeki etkileri yeterince bilinmeyen bu materyallerin tanınması ve etkilerinin tespiti önem arz etmektedir. Bu çalışma, Kızılçamın (Pinus brutia Ten.) ana yayılış sahası dışında bulunan doğal kızılçam meşceresinde gerçekleştirilmiştir. Yarı kurak iklimin hâkim olduğu Ankara-Beypazarı yöresinde; Silika, Fe2O3, Fe3O4, ZnO, TiO2, Au, CuO ve Ag nanopartiküllerinin (NPs) beş farklı doz seviyesinde (çok yüksek, yüksek, orta, düşük, çok düşük) açık alan koşullarında çimlendirilen tohumlarının fidan gelişimi ve fidan yüzdesi parametrelerine etkisi araştırılmıştır. Üç tekrarlı kurulan denemede elde edilen fidan boyu (FB), kök boğazı çapı (KBÇ) ve fidan yüzdesine (FY) ait verilere varyans analizi ve Duncan testi uygulanmıştır. Araştırma sonucunda; NP çeşit ve doz faktörleri ile her iki faktörün etkileşimi FB, KBÇ ve FY üzerinde %95 güven düzeyinde anlamlı farklılık oluşturmuştur. NP çeşit ve dozları 1+0 yaşlı kızılçam FB ve KBÇ gelişimi ile FY üzerinde olumsuz etki yapmıştır. Buna karşılık, kontrol fidanlarının boy ve çap gelişimi ile FY değerlerinin daha yüksek olduğu tespit edilmiştir. Kontrol işlemi fidanlarının ortalama FB değeri, Fe2O3 NP uygulaması boy değerlerine göre %35 yüksek, KBÇ değeri ise Cu NP uygulamasına göre %70 civarında daha yüksek olduğu tespit edilmiştir.

Destekleyen Kurum

Kastamonu Üniversitesi Bilimsel Araştırma Proje Koordinatörlüğü

Proje Numarası

KUBAP-01/2017-11

Teşekkür

Bu çalışma Kastamonu Üniversitesi Bilimsel Araştırma Proje Koordinatörlüğü tarafından desteklenen KUBAP-01/2017-11 nolu projenin imkanlarından faydalanılarak üretilmiştir.

Kaynakça

  • Aleksandrowicz-Trzcińska, M., Bederska-Błaszczyk, M., Szaniawski, A., Olchowik, J., Studnicki, M. (2019). The effects of copper and silver nanoparticles on container-grown Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) seedlings. Forests, 10(3): 269. https://doi.org/10.3390/f10030269
  • Arslan, M. (2018). Effect of Nano Silver and Zinc on Seed Germination and Seedling Growth of Sugar Beet, The Turkey 6. Seed Congress with International Participation, 10-13 September 2018, Niğde,TURKEY, Book of Proceedings, 121-125.
  • Askary, M., Talebi, S., Amini, F., Bangan, A. D. (2016). Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environmental and Experimental Biology, 14: 27-32.
  • Azura, M. N., Zamri, I., Rashid, M. R., Shahrin, G. M., Rafidah, A. R., Rejab, I. M., Amyita, W. U. (2017). Evaluation of nanoparticles for promoting seed germination and growth rate in MR263 and MR269 paddy seeds. Journal Tropical Agricultural Food Scince, 45: 13-24.
  • Cinisli, K. T., Uçar, S., Dikbaş, N. (2019). Nanomateryallerin Tarımda Kullanımı. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (4): 817-831.
  • Çelikbaş, H.M. (2019). Bazı Nano Partiküllerin Sarıçam (Pinus sylvestris L.) Tohumlarının Çimlenmesi Üzerindeki Etkisi. Yüksek lisans tezi. Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Doğaroğlu, Z.G., Köleli, N. (2016). Titanyum dioksit ve titanyum dioksit-gümüş nanopartiküllerinin marul (Lactuca sativa) tohumunun çimlenmesine etkisi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(ÖS 2): 193-198.
  • Doğaroğlu, Z.G, Köleli, N. (2014). Titanyum dioksit nanopartikülünün buğday çimlenmesine etkisi. ISITES 2014, Akademik Platform. Karabuk, Turkey, Book of Proceedings, 1283-1288.
  • Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., Guo, H. (2011). TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. Journal of Environmental Monitoring, 13: 822-828.
  • Fırat, Z. (2020). Beypazarı Kızılçam Kültürleri Gelişimine Nanopartikül Uygulamalarının Etkisi. Yüksek Lisans Tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Gürmen, S., Ebin, B. (2008). Nanopartiküller ve Üretim Yöntemleri-1, TMMOB Metalurji Mühendisleri Odası. Metalurji, 31-38.
  • Hao, Y., Zhang, Z.T., Rui, Y.K., Ren, J.Y., Hou, T.Q., Wu, S.J., Rui, M.M., Jiang, F.P., Liu, L.M. (2016). Effect of different nanoparticles on seed germination and seedling growth in rice. In Proceedings of the 2nd Annual International Conference on Advanced Material Engineering, AME 2016,Wuhan, China, 15–17 April 2016; Atlantis Press: Paris, France, 166–173.
  • Hediat, M. (2012). Effects of silvernanoparticles in somecropplants, Commonbean (Phaseolusvulgaris L.) andcorn (Zeamays L.). International Research Journal of Biotechnology, 3(10): 190-197.
  • Kaweeteerawat, C., Ivask, A., Liu, R., Zhang, H., Chang, C, H., Low-Kam, C., Fischer, H., Ji, Z., Pokhrel, S., Cohen, Y. (2015). Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environmental Science Technology, 49:1105–1112.
  • Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., Schuster, E. W. (2012). Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review, Crop Protection, 35: 64-70.
  • Kundu, S., Adhikari, T., Rao, A. S. (2015). Nanotechnology, Plant Nutrition and Climate Change, Chapter 9 in Climate Dynamics in Horticultural Science, 2, 152p.
  • Kuzma, J. (2008). Agrifood Nanotechnology: Upsream Assessment of Risk and Oversigt”, Center for Science, Technology, and Public Policy Humphrey Institute, University of Minnesota, USA.
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G. (2014). Foliar Exposure of the Crop Lactuca sativa to Silver Nanoparticles: Evidence for Internalization and Changes in Ag Speciation. Journal of Hazardous Materials, 264: 98–106.
  • Lee, W. M., An, Y. J., Yoon, H., Kweon, H.S. (2008). Toxicity and Bioavailability of Copper Nanoparticles to The Terrestrial Plants Mung Bean (Phaseolus radiatus) and Wheat (Triticum aestivum): Plant Agar Test For Water-Insoluble Nanoparticles. Environmental Toxicology and Chemistry, 27(9): 1915–1921.
  • Lin, D., Xing, B. (2007). Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environmental Pollution, 150(2): 243-250.
  • Ma, X., Wang, C. (2010). Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environmental Engineering Science, 27(11): 989-992.
  • Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A. (2010). Interactions Between Engineered Nanoparticles (ENPs) and Plants: Phytotoxicity, Uptake and Accumulation Review. Science of the Total Environment, 408(16): 3053–3061.
  • Miller, J. C., Serrato, R., RepresasCardenas, J. M., Kundahl, G., (2004). The Handbook of Nanotechnology. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Mohammed, M., Elgarawany, M., Al-Saeedi, A., El-Ramady, H. (2019). Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Journal of King Abdulaziz University-Meteorology Environment and Arid Land Agriculture Sciences, 28(1): 57-68.
  • Rao, C. N. R., Müller, A., Cheetham, A. K. (2005). The Chemistry of Nanomaterials Volume 1, WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim.
  • Roco, M. C. (2011). The long view of nanotechnology development: the national nanotechnology initiative at 10 years. Journal of Nanoparticle Research, 13:427–445.
  • Samadi, N. (2014). Effect of TiO2 and TiO2 Nanoparticle on. International Journal of Plant & Soil Science, 3(4):408-418.
  • Sharma, P., Bhatt, D., Zaidi, M., Saradhi, P., Khanna, P., Arora, S. (2012). Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8): 2225-2233.
  • Sun, D., Hussain, H., Yi, Z., Rookes, J., Kong, L., Cahill, D. (2016). Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere, 152: 81-91.
  • Tan Çelikbaş, A. (2019). Bazı Nano Partiküllerin Anadolu karaçamı (Pinus nigra Arnold. subsp. pallasiana Lamb. (Holmboe)) Tohumlarının Çimlenmesi Üzerindeki Etkisi. Yüksek lisans tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Thomas, R., Jasim, B., Mathew, J., Radhakrishnan, E. (2016). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25: 443-447.
  • Thuesombat, P., Hannongbua, S., Akasit, S., Çadchaçası, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety 104: 302-309.
  • Tunca, E.Ü. (2015). Nanoteknolojinin Temeli Nanopartiküller Ve Nanopartiküllerin Fitoremediasyonu, Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 5(2): 23-34.
  • URL-1 (2021). https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=BEYPAZARI (Erişim Tarihi: 12.05.2021).
  • Yang, L., Watts, D.J. (2005). Particle Surface Characteristics May Play an Important Role in Phytotoxicity of Alumina Nanoparticles. Toxicology Letter ,158(2): 122-132.
  • Zhu, H., Han, J., Xiao, J., Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured ironoxidenano particles by pumpkin plants. Journal of Environmental Monitoring,10(6): 713-717.

Effects of Some Nanoparticle Applications on Seedling Growth and Percentage of Brutian Pine (Pinus brutia Ten.) in Open Field Conditions

Yıl 2021, Cilt: 12 Sayı: 2, 278 - 286, 01.12.2021
https://doi.org/10.29048/makufebed.940151

Öz

In parallel with nanotechnological developments, the concentrations of nanoparticles in environments are increasing today. It is important to recognize and determine the effects of these materials, whose effects on the environment are not sufficiently known. This research was carried out in a natural stand of brutian pine (Pinus brutia Ten.), outside its natural distribution area. In Ankara-Beypazarı province, where the semi-arid climate is dominant; the effects of silika, Fe2O3, Fe3O4, ZnO, TiO2, Au, CuO, and Ag nanoparticles (NPs) with five different application doses (very high, high, medium, low, very low) on seedling percentage and growth of germinated brutian pine seeds were investigated in open area conditions. Data of seedling percentage (SP), height (SH), and root collar diameter (RCD) were subjected to analysis of variance and Duncan’s multiple range test. result of the research showed that the types and doses of the Np and their interactions made a significant difference on SH, RCD, and SP at 95% significant level. All types and doses of NP negatively affected the SP, SH, and RCD of 1 + 0 year-old brutian pine seedlings. It was determined that these values of the control seedlings were higher than other treatments. The average SH value of the control seedlings was 35% higher than those of the Fe2O3 NP application, RCD was found to be around 70% higher than those of the Cu NP application.

Proje Numarası

KUBAP-01/2017-11

Kaynakça

  • Aleksandrowicz-Trzcińska, M., Bederska-Błaszczyk, M., Szaniawski, A., Olchowik, J., Studnicki, M. (2019). The effects of copper and silver nanoparticles on container-grown Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) seedlings. Forests, 10(3): 269. https://doi.org/10.3390/f10030269
  • Arslan, M. (2018). Effect of Nano Silver and Zinc on Seed Germination and Seedling Growth of Sugar Beet, The Turkey 6. Seed Congress with International Participation, 10-13 September 2018, Niğde,TURKEY, Book of Proceedings, 121-125.
  • Askary, M., Talebi, S., Amini, F., Bangan, A. D. (2016). Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environmental and Experimental Biology, 14: 27-32.
  • Azura, M. N., Zamri, I., Rashid, M. R., Shahrin, G. M., Rafidah, A. R., Rejab, I. M., Amyita, W. U. (2017). Evaluation of nanoparticles for promoting seed germination and growth rate in MR263 and MR269 paddy seeds. Journal Tropical Agricultural Food Scince, 45: 13-24.
  • Cinisli, K. T., Uçar, S., Dikbaş, N. (2019). Nanomateryallerin Tarımda Kullanımı. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (4): 817-831.
  • Çelikbaş, H.M. (2019). Bazı Nano Partiküllerin Sarıçam (Pinus sylvestris L.) Tohumlarının Çimlenmesi Üzerindeki Etkisi. Yüksek lisans tezi. Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Doğaroğlu, Z.G., Köleli, N. (2016). Titanyum dioksit ve titanyum dioksit-gümüş nanopartiküllerinin marul (Lactuca sativa) tohumunun çimlenmesine etkisi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(ÖS 2): 193-198.
  • Doğaroğlu, Z.G, Köleli, N. (2014). Titanyum dioksit nanopartikülünün buğday çimlenmesine etkisi. ISITES 2014, Akademik Platform. Karabuk, Turkey, Book of Proceedings, 1283-1288.
  • Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., Guo, H. (2011). TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. Journal of Environmental Monitoring, 13: 822-828.
  • Fırat, Z. (2020). Beypazarı Kızılçam Kültürleri Gelişimine Nanopartikül Uygulamalarının Etkisi. Yüksek Lisans Tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Gürmen, S., Ebin, B. (2008). Nanopartiküller ve Üretim Yöntemleri-1, TMMOB Metalurji Mühendisleri Odası. Metalurji, 31-38.
  • Hao, Y., Zhang, Z.T., Rui, Y.K., Ren, J.Y., Hou, T.Q., Wu, S.J., Rui, M.M., Jiang, F.P., Liu, L.M. (2016). Effect of different nanoparticles on seed germination and seedling growth in rice. In Proceedings of the 2nd Annual International Conference on Advanced Material Engineering, AME 2016,Wuhan, China, 15–17 April 2016; Atlantis Press: Paris, France, 166–173.
  • Hediat, M. (2012). Effects of silvernanoparticles in somecropplants, Commonbean (Phaseolusvulgaris L.) andcorn (Zeamays L.). International Research Journal of Biotechnology, 3(10): 190-197.
  • Kaweeteerawat, C., Ivask, A., Liu, R., Zhang, H., Chang, C, H., Low-Kam, C., Fischer, H., Ji, Z., Pokhrel, S., Cohen, Y. (2015). Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environmental Science Technology, 49:1105–1112.
  • Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., Schuster, E. W. (2012). Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review, Crop Protection, 35: 64-70.
  • Kundu, S., Adhikari, T., Rao, A. S. (2015). Nanotechnology, Plant Nutrition and Climate Change, Chapter 9 in Climate Dynamics in Horticultural Science, 2, 152p.
  • Kuzma, J. (2008). Agrifood Nanotechnology: Upsream Assessment of Risk and Oversigt”, Center for Science, Technology, and Public Policy Humphrey Institute, University of Minnesota, USA.
  • Larue, C., Castillo-Michel, H., Sobanska, S., Cécillon, L., Bureau, S., Barthès, V., Ouerdane, L., Carrière, M., Sarret, G. (2014). Foliar Exposure of the Crop Lactuca sativa to Silver Nanoparticles: Evidence for Internalization and Changes in Ag Speciation. Journal of Hazardous Materials, 264: 98–106.
  • Lee, W. M., An, Y. J., Yoon, H., Kweon, H.S. (2008). Toxicity and Bioavailability of Copper Nanoparticles to The Terrestrial Plants Mung Bean (Phaseolus radiatus) and Wheat (Triticum aestivum): Plant Agar Test For Water-Insoluble Nanoparticles. Environmental Toxicology and Chemistry, 27(9): 1915–1921.
  • Lin, D., Xing, B. (2007). Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environmental Pollution, 150(2): 243-250.
  • Ma, X., Wang, C. (2010). Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environmental Engineering Science, 27(11): 989-992.
  • Ma, X., Geisler-Lee, J., Deng, Y., Kolmakov, A. (2010). Interactions Between Engineered Nanoparticles (ENPs) and Plants: Phytotoxicity, Uptake and Accumulation Review. Science of the Total Environment, 408(16): 3053–3061.
  • Miller, J. C., Serrato, R., RepresasCardenas, J. M., Kundahl, G., (2004). The Handbook of Nanotechnology. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Mohammed, M., Elgarawany, M., Al-Saeedi, A., El-Ramady, H. (2019). Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Journal of King Abdulaziz University-Meteorology Environment and Arid Land Agriculture Sciences, 28(1): 57-68.
  • Rao, C. N. R., Müller, A., Cheetham, A. K. (2005). The Chemistry of Nanomaterials Volume 1, WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim.
  • Roco, M. C. (2011). The long view of nanotechnology development: the national nanotechnology initiative at 10 years. Journal of Nanoparticle Research, 13:427–445.
  • Samadi, N. (2014). Effect of TiO2 and TiO2 Nanoparticle on. International Journal of Plant & Soil Science, 3(4):408-418.
  • Sharma, P., Bhatt, D., Zaidi, M., Saradhi, P., Khanna, P., Arora, S. (2012). Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8): 2225-2233.
  • Sun, D., Hussain, H., Yi, Z., Rookes, J., Kong, L., Cahill, D. (2016). Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere, 152: 81-91.
  • Tan Çelikbaş, A. (2019). Bazı Nano Partiküllerin Anadolu karaçamı (Pinus nigra Arnold. subsp. pallasiana Lamb. (Holmboe)) Tohumlarının Çimlenmesi Üzerindeki Etkisi. Yüksek lisans tezi, Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • Thomas, R., Jasim, B., Mathew, J., Radhakrishnan, E. (2016). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25: 443-447.
  • Thuesombat, P., Hannongbua, S., Akasit, S., Çadchaçası, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety 104: 302-309.
  • Tunca, E.Ü. (2015). Nanoteknolojinin Temeli Nanopartiküller Ve Nanopartiküllerin Fitoremediasyonu, Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 5(2): 23-34.
  • URL-1 (2021). https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=BEYPAZARI (Erişim Tarihi: 12.05.2021).
  • Yang, L., Watts, D.J. (2005). Particle Surface Characteristics May Play an Important Role in Phytotoxicity of Alumina Nanoparticles. Toxicology Letter ,158(2): 122-132.
  • Zhu, H., Han, J., Xiao, J., Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured ironoxidenano particles by pumpkin plants. Journal of Environmental Monitoring,10(6): 713-717.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Sezgin Ayan 0000-0001-8077-0512

Esra Nurten Yer Çelik 0000-0002-6368-3916

Zarife Fırat Bu kişi benim 0000-0002-2019-8232

Orhan Gülseven 0000-0001-9242-8394

Proje Numarası KUBAP-01/2017-11
Yayımlanma Tarihi 1 Aralık 2021
Kabul Tarihi 27 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 12 Sayı: 2

Kaynak Göster

APA Ayan, S., Yer Çelik, E. N., Fırat, Z., Gülseven, O. (2021). Açık Arazi Koşullarında Kızılçam (Pinus brutia Ten.) Tohumlarının Fidan Gelişimi ve Fidan Yüzdesi Üzerine Bazı Nanopartikül Uygulamalarının Etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 278-286. https://doi.org/10.29048/makufebed.940151