Research Article
BibTex RIS Cite

Investigation of Heavy Metal Concentrations and Phytoremediation Potential of Common Reed (Phragmites australis (Cav.) Trin.Ex.Steudel) Growing in Karataş Lake (Burdur)

Year 2025, Volume: 16 Issue: 1, 14 - 28, 08.06.2025
https://doi.org/10.29048/makufebed.1648211

Abstract

Karataş Lake dried up completely in September 2021 due to some reasons such as lack of sufficientrainfall, withdrawal of groundwater and climate change. In 2022, it started to hold water again with the increasein precipation and the redirection of water resources. This study which was carried out between October-2019and July-2020 some heavy metal concentrations of root, stems and leaves of Phragmites australis living inKarataş Lake were determined. Fe was highest and Cd was lowest in root, stem and leaf. It was determined thatall metals, except Mo, accumulated at the highest level in root, followed by leaves and stem. In general, it wasdetermined that metal levels in root and leaf decreased in autumn and increased in spring, while in stem theydecreased in winter and increased in summer. According to biaccumulation factor (BF) values, it was determinedthat Phragmites australis is a high accumulator plant for Cu and Zn in spring, Cu and Mo in summer, Cd, Cu andZn in autumn, and Cu, Mo, Pb and Zn in winter. According to translocation factor (TF) values, it is suitable forphytoextractionin terms of Ni (leaf/root) accumulation in autumn, Mo (leaf/root) in winter and spring, and Fe(stem/root) and Mo (leaf/root) accumulation in summer. Mo is the only both BF and TF values are greater than1. Phragmites australis can be used for phytoremediation in terms of Mo. The significant potential of Mo in termsof phytoremediation will contribute to the existing knowledge in this field.

Project Number

FYL-2019-7384

References

  • Agoramoorthy, G., & Pandiyan, J. (2016). Toxic pollution threatens migratory shorebirds in India. Environmental Science and Pollution Research, 23(15), 15771–15772. https://doi.org/10.1007/s11356-016-7021-6
  • Al-Homaidan, A. A., Al-Otaibi, T. G., El-Sheikh, M. A., Al-Ghanayem, A. A., & Ameen, F. (2020). Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis. Environmental Monitoring and Assessment, 192, 1-10. https://doi.org/10.1007/s10661-020-8177-6
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019:1-14.https://doi.org/10.1155/2019/6730305
  • Atabey, E. (2022). Mermer ocakları Burdur’u çölleştiriyor.Temiz Mekan.https://www.temizmekan.com/mermer-ocaklari-burduru-collestiriyor/
  • Backer, A. J. M., & Brooks, R. R. (1989). Terrestrial higherplants which hyper accumulate metallic elements. Areview of their distribution, ecology andphytochemistry. Biorecovery, 1(2), 81-126.
  • Baldantoni, D., & Bellino, A. (2021). On the capability of theepigeous organs of Phragmites australis to act as metalaccumulators in biomonitoring studies. Sustainability,13, 7745. https://doi.org/10.3390/su13147745
  • Baldantoni, D., Alfani, A., Tommasi, P.D., Bartoli, G., Santo,V.D. (2004). Assessment of macro and microelementaccumulation capability of two plants. Environmental Pollution, 130(2), 149-156.https://doi.org/10.1016/j.envpol.2003.12.015
  • Baron J., Legret M. & Astruc M. (1990). Study ofinteractions between heavy metals and sewage sludge:determination of stability constants and complexesformed with Cu and Cd. Environmental Technology, 11,151-162.https://doi.org/10.1080/09593339009384850
  • Başyiğit, B., & Tekin-Özan, S. (2013). Concentrations ofsome heavy metals in water, sediment and tissues ofpikeperch (Sander lucioperca) from Karataş Lakerelated to physico-chemical parameters, fish size, andseasons. Polish Journal of Environmental Studies, 22(3),633-644.
  • Baytop, T. (1997). Türkçe Bitki Adları Sözlüğü. Türk DilKurumu Yayımları.
  • Bidar, G., Pruvot, C., Garcon, G., Verdin, A., Shirali, P., &Douay, F. (2009). Seasonal and annual variations ofmetal uptake, bioaccumulation and toxicity in Trifoliumrepens and Lolium perenne growing in a heavy metal-contaminated field. Environmental Science and Pollution Research, 16, 42–53.https://doi.org/10.1007/s11356-008-0021-4
  • Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O.,Gussman, C., Kapulnik, Y., Ensley, B.D., & Raskin, I.(1997). Enhanced accumulation of Pb in Indian mustardby soil-applied chelating agents. Environmental Science and Technology, 31(3), 860-865.
  • Bock, R. (1979). A handbook of decomposition methods inanalytical chemistry. Scranton: International TextbookCo.
  • Boese, B. L., & Lee, H. (1992). Synthesis of methods topredict bioaccumulation of sediment pollutants.Environmental Research Laboratory.
  • Bolat, K., & Kara, Ö. (2017). Bitki besin elementleri:kaynakları, işlevleri, eksik ve fazlalıkları. Bartın OrmanFakültesi Dergisi, 19(9), 218-228.https://doi.org/10.24011/barofd.251313
  • Bonanno, G., & Giudice, R. L. (2010). Heavy metalbioaccumulation by the organs of Phragmites australis (common reed) and their potential use ascontamination indicators. Ecological Indicators, 10(3),639-645.https://doi.org/10.1016/j.ecolind.2009.11.002
  • Bonanno, G., & Vymazal, J. (2017). Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. Journal of Geochemical Exploration, 181, 22–30. https://doi.org/10.1016/j.gexplo.2017.06.018
  • Borowiak, K., Kanclerz, J., Mleczek, M., Lisiak, M., & Drzewiecka, K. (2016). Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem. Archives of Environmental Protection, 42(3), 47-57. https://doi.org/10.1515/aep-2016-0032
  • Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144(3), 967-975. https://doi.org/10.1016/j.envpol.2006.01.046
  • Burdur’daki Karataş Gölü Kurudu (2025). Virahaber. Erişim adresi: https://www.virahaber.com/burdurdaki-karatas-golu-kurudu-62232h.htm
  • Campbell, N. A., & Reece, J. B. (2021). Biology. (12. Baskı) Pearson Benjamn Cummings. Censi, P., Spoto, S. E., Saiano, F., Sprovieri, M., Mazzola, S., Nardone, G., Di Geronimo, S.I., Punturo, R., & Ottonello, D. (2006). Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere, 64(7), 1167-1176. https://doi.org/10.1016/j.chemosphere.2005.11.008
  • Chaplygin, V., Dudnikova, T., Chernikova, N., Fedorenko, A., Mandzhieva, S., Fedorenko, G., Sushkova, S., Nevidomskaya, D., Minkina, T., Sathishkumar, P., & Rajput, V.D. (2022). Phragmites australis cav. as a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. Chemosphere. 308, 136409. https://doi.org/10.1016/j.chemosphere.2022.136409
  • Charlesworth, S., De Miguel, E., & Ordonez, A. (2011). A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environmental Geochemistry and Health, 33, 103–123. https://doi.org/10.1007/s10653-010-9325-7
  • Çetin, B. (2009). The use of wetland of Karataş (Bahçeözü) Lake (Burdur-Karamanlı) and a geographical look at the emerging problems. New World Science Academy, 4(4), 157-174.
  • Demirezen, D., & Aksoy, A. (2006). Common hydrophytes as bioindicators of iron and manganese pollutions. Ecological Indicators, 6(2), 388-393.
  • Doğan, M. (2011). Akuatik makrofitlerde ağır metal akümülasyonu. Türk Bilimsel Derlemeler Dergisi, 4(2), 33-36.
  • Doğru, A., Altundağ, H., & Dündar, M.Ş. (2021). Bitkilerde ağır metal hiperakümülasyonu ve fitoremediasyon. Journal of Agricultural Biotechnology, 2(2), 32-55.
  • Duman, F. (2005). Sapanca ve Abant Gölü su, sediment ve sucul bitki örneklerindeki ağır metal konsantrasyonlarının karşılaştırmalı olarak incelenmesi [Doktora tezi, Ankara Üniversitesi]
  • Duman, F., Obalı, O., & Demirezen, D. (2006). Seasonal changes of metal accumulation and distribution in shining pondweed (Potamogeton lucens). Chemosphere, 65(11), 2145-2151. https://doi.org/10.1016/j.chemosphere.2006.06.036
  • Duman, F., Çiçek, M., & Sezen, G. (2007). Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology, 16(6), 457-463. https://doi.org/10.1007/s10646-007-0150-4.
  • Duman, F., Urey, E., & Koca, F. D. (2015). Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Environmental Science and Pollution Research, 22, 17886-17896. https://doi.org/10.1007/s11356-015-4979-4
  • Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1-42.
  • Ege, I. (2019). Burdur-Karamanlı arasında taş ocaklarındaki zamansal değişimin CBS teknolojisi ve uzaktan algılama ile incelenmesi. B. Gonencgil, T. A. Ertek, I. Akova & E. Elbaşı (Ed.), 1st Istanbul International Geography Congress Proceedings Book (s. 563–570). İstanbul, Türkiye: Istanbul University Press. https://doi.org/10.26650/PB/PS12.2019.002.055
  • Eid E. M., Shaltout, K. H., Al-Sodany, Y. M., Haroun, S. A., Galal, T. M., Ayad, H., Khedher, K.M., & Jensen, K. (2021). Temporal potential of Phragmites australis as a phytoremediator to remove Ni and Pb from water and sediment in Lake Burullus, Egypt. Bulletin of Environmental Contamination and Toxicology. 106, 516-527. https://doi.org/10.1007/s00128-021-03120-y
  • Eid, E.M., Shaltout, K.H., Al-Sodany, Y.M., Haroun, S. A., Galal, T.M., Ayed, H., Khedher, K.M., & Jensen, K. (2020). Common reed (Phragmites australis (Cav.) trin. ex Steudel) as a candidate for predicting heavy metal contamination in Lake Burullus, Egypt: A biomonitoring approach. Ecological Engineering. 148, 105787. https://doi.org/10.1016/j.ecoleng.2020.105787
  • Ekeocha, C., & Anunuso, C. (2016). Comparative analysis of index of geoaccumulation of heavy metals in some selected auto mechanic soils in Abuja, Nigeria. Journal of Chemical Society of Nigeria, 41(2), 96-102.
  • Ellis, K. V., White, G., & Adn Warn, A, E. (1989). Surface Water Pollution and Its Control Antony, Machillan.
  • Fan, H., Chen, S., Li, Z., Liu, P., Xu, C., & Yang, X. (2020). Assessment of heavy metals in water, sediment and shellfish organisms in typical areas of the Yangtze River Estuary, China. Marine Pollution Bulletin, 151, 110864. https://doi.org/10.1016/j.marpolbul.2019.110864
  • Fisher, R.A. (1928). The general sampling distribution of the multiple correlation coefficient. Proceeding of the Royal Society A, 121(788), 654–673.
  • Hamidian, A. H., Jafari Ozumchelouei, E., & Atashgahi, M. (2024). Assessment of Metal Pollution in Sediments and Their Bioaccumulation in Phragmites australis from Shoor River, Iran. Soil and Sediment Contamination: An InternationalJournal. https://doi.org/10.1080/15320383.2024.2420182
  • Heidarzadeh, M., Abdi, N., Farahani, J.V., Ahmadi, A., & Toranjzar, H. (2020). The effect of Typha latifolia L. on heavy metals phytoremediation at the urban and industrial wastewater entrance to the Meighan wetland, Iran. Journal of Applied Research in Water and Wastewater, 14, 167-171.
  • Henry, J.R. (2000). An overview of the phytoremediation of lead and mercury. National Network of Environmental Management Studies (NNEMS) Fellow, 1–31.
  • Hu, H. (2000). Exposure to metals. Primary Care, 27(4), 983-996. https://doi.org/10.1016/s0095-4543(05)70185-8.
  • Işıldar, H. T., & Erçoşkun, Ö. Y. (2021). Göller Yöresinde Sürdürülebilirlik ve Dirençlilik. Journal of Management Theory and Practices Research, 2(2), 89-116.
  • Karataş Gölü, 2025. Vikipedi. Erişim adresi: https://tr.wikipedia.org/wiki/Karata%C5%9F_G%C3%B6l%C3%BC
  • Kaya, D. C. Ç., (2021). Beyşehir, Eğirdir, Çivril, Suğla, Karataş, Kovada ve Gölhisar göllerinin su, sedimen ve balık (Carassius gibelio) örneklerinde bazı ağır metal konsantrasyonlarının belirlenmesi [Doktora tezi, Mehmet Akif Ersoy Üniversitesi]
  • Kazancı, N., Girgin S. Ç., Dügel M., Oğuzkurt D., Mutlu B., Dere Ş., Barlas M., & Özçelik M. (1999). Türkiye İç Suları Araştırmaları Dizisi IV: Köyceğiz, Beyşehir, Eğirdir, Akşehir, Eber, Çorak, Kovada, Yarışlı, Bafa, Salda, Karataş, Çavuşçu Gölleri, Küçük ve Büyük Menderes Deltası, Güllük Sazlığı, Karamuk Bataklığı'nın Limnolojisi, Çevre Kalitesi ve Biyolojik Çeşitliliği. Form Ofset.
  • Kır, İ., Tekin-Özan, S., & Barlas, M. (2006). Heavy metal concentrations in organs of Rudd, Scardinus erythrophthalmus L., 1758 populating Lake Karatas-Turkey. Fresenius Environmental Bulletin, 15(1), 25-29.
  • Klink, A. (2017). A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Environmental Science and Pollution Research, 24, 3843-3852. https://doi.org/10.1007/s11356-016-8135-6
  • Kumari, M., & Tripathi, B.D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80–86. https://doi.org/10.1016/j.ecoenv.2014.10.034
  • Kurt, B. (2006). Türkiye’nin Önemli Doğa Alanları. Ankara: Doğa Derneği.
  • Kuruyan Karataş Gölü tekrar su tutmaya başladı, 2025. Doğruhaber. Erişim adresi: https://dogruhaber.com.tr/haber/826271-kuruyan-karatas-golu-tekrar-su-tutmaya-basladi
  • Laing, G.D., Tack, F.M.G. & Verloo, M.G. (2003). Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Analytica Chimica Acta, 497(1-2), 191-198.
  • Lee, H. I. I. (1992). Models, muddles, and mud: Predicting bioaccumulation of sediment-associated pollutants. In: G.A. Burton (Eds.), Sediment Toxicity Assessment (pp. 267-289). Lewis Publishers, Boca Raton.
  • Liu, J., Yin, P., Chen, B., Gao, F., Song, H., & Li, M. (2016). Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Marine Pollution Bulletin, 109(1), 633-639. https://doi.org/10.1016/j.marpolbul.2016.05.020
  • Macek, T., Kotrba, P., Svatos, A., Novakova, M., Demnerova, K., & Mackova, M. (2008). Novel roles for genetically modified plants in environmental protection. Trends in Biotechnology, 26, 146–152. https://doi.org/10.1016/j.tibtech.2007.11.009
  • MEB. (2012). Tarım Teknolojileri Su Kenarı ve Su İçi Süs Bitkileri Yetiştiriciliği, 622B00182, 68 s, Ankara.
  • Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/Technology, 7, 47-59. https://doi.org/10.1007/s11157-007-9125-4
  • Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2010). Application of chemometrics to analysis of soil pollutants. Trends in Analytical Chemistry, 29, 430-445. https://doi.org/10.1016/j.trac.2010.02.009
  • Mukhopadhyay, S., & Maiti, S. K. (2010). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research, 8(3), 207-222.
  • OpenAl. (2025). Phragmites australis bitkisinin yapay zeka destekli çizimi (Yapay zeka tarafından oluşturulmuş görsel). ChatGPT. https://chat.openai.com
  • Orman ve Su İşleri Bakanlığı (2017). Göller ve Sulak Alanlar Eylem Planı 2017-2023.
  • Oruçoğlu, K., & Beyhan, M. (2019). Göller Bölgesi Göllerinde Ağır Metal Kirliliğinin Değerlendirilmesi. Bilge International Journal of Science and Technology Research, 3(1), 10-20. https://doi.org/10.30516/bilgesci.449984
  • Özçelik, Ş. (2022). Eğirdir Gölü'nün suyunda, sedimentinde ve göldeki Phragmites australis (Cav.) Trin. Ex. Steudel ile Typha angustifolia (L.) örneklerindeki ağır metal düzeylerinin belirlenmesi. [Doktora tezi, Süleyman Demirel Üniversitesi].
  • Özçelik, Ş., & Tekin-Özan, S. (2023). Seasonal variations of some heavy metals in common reed (Phragmites australis (Cav.) Trin. Ex. Steudel) and narrow leaved cattail (Typha angustifolia L.) in Eğirdir Lake (Turkey) and the possibility of using for phytoremediation of these macrophytes. Environment Science and Pollution Research, 30, 112194-112205. https://doi.org/10.1007/s11356-023-30226-z
  • Parveen, N., Zaidi, S., Danish, M., 2016. Support vector regression model for predicting the sorption capacity of lead (II). Perspectives in Science, 8, 629–631. https://doi.org/10.1016/j.pisc.2016.06.040
  • Pbugmacher, S., Geissler, K., & Steinberg, C. (1999). Activity of Phase I and Phase II Detoxication Enzymes in Different Cormus Parts of Phragmites australis. Ecotoxicology and Environmental Safety, 42(1), 62-66. https://doi.org/10.1006/eesa.1998.1727
  • Plaster, E. J. (1992). Soil Science and Management. Delmar Publishers Inc.
  • Prasad, M. N. V. (2003). Phytoremediation of metal-polluted ecosystems: Hype for commercialization. Russian Journal of Plant Physiology, 50(3), 764-780.
  • Rascio, N. (1977). Metal accumulation by some plants growing on zinc-mine deposits. Oikos, 29, 250–253.
  • Rezania, S., Park, J., Rupani, P. F., Darajeh, N., Xu, X., & Shahrokhishahraki, R. (2019). Phytoremediation potential and control of Phragmites australis as a green phytomass: an overview. Environmental Science and Pollution Research, 26(8), 7428–7441. https://doi.org/10.1007/s11356-019-04300-4
  • Sancer, O., & Tekin-Özan, S. (2016). Seasonal changes of metal accumulation in water, sediment and Phragmites australis (Cav.) Trin. ex Steudel growing in Lake Kovada (Isparta, Türkiye). Süleyman Demirel Üniversitesi Journal of Science, 11(2), 45-60.
  • Sawidis, T., Chettri, M.K., Zachariadis, G.A. & Stratis, J.A. (1995). Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology and Environmental Safety, 32, 73-80.
  • Seçmen, Ö., & Leblebici, E. (2008). Türkiye Sulak Alan Bitkileri ve Bitki Örtüsü. Ege Üniversitesi Fen Fakültesi Yayınları.
  • Shine, J., Ryan, D., Limon, J., & Ford, T. (1998). Annual cycle of heavy metals in a tropical lake–Lake Chapala, Mexico. Journal of Environmental Science Health, Part A, 33, 23-43.
  • Singh, S., Parihar, P., Singh, R., Singh, V.P. & Prasad, S.M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143. https://doi.org/10.3389/fpls.2015.01143
  • Takarina, N. D., & Pin, T. G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, 21(2), 77-81. https://doi.org/10.7454/mss.v21i2.7308
  • Tanyolaç, J. (2009). Limnoloji (6. Baskı), Hatipoğlu yayınları.
  • Tekin-Özan, S., Özçelik. Ş., & Özan, C. (2022). The determination of heavy metals in Eurasian Watermilfoil (Myriophyllum spicatum L.) plant growing in the Eğirdir Lake. Journal of Yalvaç Academy, 7(1), 46-57.
  • Tekin-Özan, S. (2023). Karataş Gölü (Burdur)' nün suyunda, sedimentinde ve gölde yetişen kamış (Phragmites australıs (Cav) Trin.Ex Steudel) bitkisinde ağır metal düzeylerinin belirlenmesi. Proje Sonuç Raporu. Proje No: FYL-2019-7384. SDÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi.
  • Tekin-Özan, S., Tunç, M., & Bakioğlu-Acar, B. (2024). Evaluation of some heavy metals and selenium pollution in Karataş Lake (Burdur/Türkiye) using various pollution indices and statistical analysis. Marine Pollution Bulletin, 199, 155927. https://doi.org/10.1016/j.marpolbul.2023.115927
  • Terry, N., & Bañuelos, G. (2000). Phytoremediation of contaminated soil and water. CRC Press. https://doi.org/10.1201/9780367803148
  • Topal, M. (2021). Investigation of some heavy metal accumulation ability of Phragmites australis from Poultry Slaughterhouse Wastewaters. Arabian Journal of Science and Engineering. 46, 115-122. https://doi.org/10.1007/s13369-020-04825-8
  • USEPA. (2001). Methods for Collection Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual: EPA 823-B-01-002; US. Environmental Protection Agency, Office ofWater, Washington, D.C.
  • Usero, J., Izquierdo, C., Morillo, J., & Gracia, I. (2004). Heavy metals in fish (Solea vulgaris, Anguilla anguilla and Liza aurata) from salt marshes on the southern Atlantic coast of Spain. Environment International, 29(7), 949-956.
  • Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chemical Engineering Journal, 290, 232-242. https://doi.org/10.1016/j.cej.2015.12.108
  • Kuruyan Karataş Gölü tekrar su tutmaya başladı, 2025. Doğruhaber. Erişim adresi: https://dogruhaber.com.tr/haber/826271-kuruyan-karatas-golu-tekrar-su-tutmaya-basladi
  • Wei, C.Y., Chen, T.B., & Huang, Z.C. (2002). Cretan bake (Pteris cretica L): an arsenic accumulating Plant. Acta Ecology Sinica, 22, 777-782.
  • Xu, J., Chen, Y., Zheng, L., Liu, B., Liu, J., & Wang, X. (2018). Assessment of heavy metal pollution in the sediment of the main tributaries of Dongting Lake, China. Water, 10(8), 1060. https://doi.org/10.3390/w10081060
  • Vu, C. T., Lin, C., Nguyen, K. A., Shern, C. C., & Kuo, Y. M. (2018). Ecological risk assessment of heavy metals sampled in sediments and water of the Houjing River, Taiwan. Environmental Earth Sciences, 77, 388. https://doi.org/10.1007/s12665-018-7573-5
  • Yabanlı, M., Yozukmaz, A., & Sel, F. (2014). Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (haloragaceae): An example of Kadın Creek (Muğla, Turkey). Brazilian Archives of Biology and Technology, 57(3), 434-440. https://doi.org/10.1590/S1516-8913201401962
  • Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Khan, S. A. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120, 274-298. https://doi.org/10.1016/j.ecoleng.2018.05.039
  • Yalçuk, A., Pakdil, N.B., & Kantürer, O. (2014). Investigation of the effects of fish farms in Bolu (Turkey) on aquatic pollution. International Journal of Agricultural and Food Research, 3(1), 1-13.
  • Yang, X., Feng, Y., He, Z., & Stoffella, P.J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 339-353.https://doi.org/10.1016/j.jtemb.2005.02.007
  • Yarar, M., & Magnin, G. (1997). Türkiye’nin önemli kuşalanları. İstanbul: Doğal Hayatı Koruma DerneğiYayınları.
  • Yarıcı, M. A., & Yağbasan, Ö. (2018). Burdur GölleriHavzası’nın Morfolojik Özelliklerinin BelirlenmesindeCoğrafi Bilgi Sistemlerinin Kullanımı. In International Geography Symposium on the 30th Anniversary ofTUCAUM.
  • Yavuz, O., & Sarıgül, N. (2016). Toprak ve suculortamlardaki ağır metal kirliliği ve ağır metal dirençlimikroorganizmalar. Mehmet Akif Ersoy Üniversitesi FenBilimleri Enstitüsü Dergisi, 7(1), 44–51.
  • Zayed, A., Gowthaman, S., & Terry, N. (1998).Phytoaccumulation of Trace Elements by WetlandPlants: I. Duckweed. Journal of Environmental Quality,27(3), 715-721.
  • Zhang, C., Shan, B., Tang, W., Wang, C., & Zhang, L. (2019).Identifying sediment associated toxicity in riversaffected by multiple pollutants from the contaminantbioavailability. Ecotoxicology and EnvironmentalSafety. 171, 84-91.https://doi.org/10.1016/j.ecoenv.2018.12.075
  • Zhang, F., Yan, X., Zeng, C., Zhang, M., Shrestha, S.,Devkota, L. P., & Yao, T. (2012). Influence of trafficactivity on heavy metal concentrations of roadsidefarmland soil in mountainous areas. International Journal of Environmental Research and Public Health,9(5), 1715–1731.https://doi.org/10.3390/ijerph9051715
  • Zhulidov, A. V. (1996). Heavy metals in Russian Wetlands.In: N. M. Van Straalen & D. A. Krivolutsky (Eds.),Bioindicator Systems for Soil Pollution (pp. 233-247).Kluwer Academic Publishers.

Karataş Gölü (Burdur)’nde Yetişen Su Kamışının (Phragmites australis (Cav.) Trin.Ex.Steudel) Bazı Ağır Metal Konsantrasyonlarının ve Fitoremediasyon Potansiyelinin Araştırılması

Year 2025, Volume: 16 Issue: 1, 14 - 28, 08.06.2025
https://doi.org/10.29048/makufebed.1648211

Abstract

Karataş Gölü yeterli yağış olmaması, yeraltı sularının çekilmesi ve iklim değişikliği gibi sebeplerle Eylül-2021’de tamamen kurumuştur. 2022’de yağışların artması ve su kaynaklarının yönlendirilmesi ile yeniden sututmaya başlamıştır. Ekim 2019-Temmuz 2020 tarihleri arasında gerçekleştirilen bu çalışmada gölde yaşayanPhragmites australis’in kök, gövde ve yapraklarındaki bazı ağır metallerin konsantrasyonları belirlenmiştir. Kök,gövde ve yaprakta en fazla biriken metal Fe iken, en az biriken metal Cd olmuştur. Mo dışında tüm metallerin enyüksek seviyede kökte biriktiği, bunu yaprak ve gövdenin takip ettiği belirlenmiştir. Genel olarak, metallerinkökte ve yaprakta sonbaharda azaldığı ve ilkbaharda arttığı, gövdede ise kış mevsiminde azaldığı, yaz mevsimindearttığı belirlenmiştir. Biyoakümülasyon faktörü (BF) değerlerine göre Phragmites australis’in ilkbaharda Cu ve Zn,yaz mevsiminde Cu ve Mo, sonbaharda Cd, Cu ve Zn, kış mevsiminde ise Cu, Mo, Pb ve Zn için yüksek derecedeakümülatör bir bitki olduğu belirlenmiştir. Translokasyon faktörü (TF) değerlerine göre ise sonbaharda Ni(yaprak/kök) ve Se (yaprak/kök), kış ve ilkbaharda Mo (yaprak/kök), yaz mevsiminde ise Fe (gövde/kök) ve Mo(yaprak/kök) birikimi açısından fitoekstraksiyon için uygundur. Hem BF hem de TF değerinin 1’den büyük olduğutek metal Mo’dir. Phragmites australis Mo açısından fitoremediasyon için kullanılabilir. Mo’nin fitoremediasyonaçısından belirgin bir potansiyel göstermesi bu alandaki bilgilere katkı sağlayacaktır.

Supporting Institution

Süleyman Demirel Üniversitesi

Project Number

FYL-2019-7384

Thanks

Bu çalışma Süleyman Demirel Üniversitesi Bilimsel Araştırmalar Projeleri Koordinasyon Birimi tarafından FYL-2019-7384 nolu proje ile desteklenmiştir.

References

  • Agoramoorthy, G., & Pandiyan, J. (2016). Toxic pollution threatens migratory shorebirds in India. Environmental Science and Pollution Research, 23(15), 15771–15772. https://doi.org/10.1007/s11356-016-7021-6
  • Al-Homaidan, A. A., Al-Otaibi, T. G., El-Sheikh, M. A., Al-Ghanayem, A. A., & Ameen, F. (2020). Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis. Environmental Monitoring and Assessment, 192, 1-10. https://doi.org/10.1007/s10661-020-8177-6
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019:1-14.https://doi.org/10.1155/2019/6730305
  • Atabey, E. (2022). Mermer ocakları Burdur’u çölleştiriyor.Temiz Mekan.https://www.temizmekan.com/mermer-ocaklari-burduru-collestiriyor/
  • Backer, A. J. M., & Brooks, R. R. (1989). Terrestrial higherplants which hyper accumulate metallic elements. Areview of their distribution, ecology andphytochemistry. Biorecovery, 1(2), 81-126.
  • Baldantoni, D., & Bellino, A. (2021). On the capability of theepigeous organs of Phragmites australis to act as metalaccumulators in biomonitoring studies. Sustainability,13, 7745. https://doi.org/10.3390/su13147745
  • Baldantoni, D., Alfani, A., Tommasi, P.D., Bartoli, G., Santo,V.D. (2004). Assessment of macro and microelementaccumulation capability of two plants. Environmental Pollution, 130(2), 149-156.https://doi.org/10.1016/j.envpol.2003.12.015
  • Baron J., Legret M. & Astruc M. (1990). Study ofinteractions between heavy metals and sewage sludge:determination of stability constants and complexesformed with Cu and Cd. Environmental Technology, 11,151-162.https://doi.org/10.1080/09593339009384850
  • Başyiğit, B., & Tekin-Özan, S. (2013). Concentrations ofsome heavy metals in water, sediment and tissues ofpikeperch (Sander lucioperca) from Karataş Lakerelated to physico-chemical parameters, fish size, andseasons. Polish Journal of Environmental Studies, 22(3),633-644.
  • Baytop, T. (1997). Türkçe Bitki Adları Sözlüğü. Türk DilKurumu Yayımları.
  • Bidar, G., Pruvot, C., Garcon, G., Verdin, A., Shirali, P., &Douay, F. (2009). Seasonal and annual variations ofmetal uptake, bioaccumulation and toxicity in Trifoliumrepens and Lolium perenne growing in a heavy metal-contaminated field. Environmental Science and Pollution Research, 16, 42–53.https://doi.org/10.1007/s11356-008-0021-4
  • Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O.,Gussman, C., Kapulnik, Y., Ensley, B.D., & Raskin, I.(1997). Enhanced accumulation of Pb in Indian mustardby soil-applied chelating agents. Environmental Science and Technology, 31(3), 860-865.
  • Bock, R. (1979). A handbook of decomposition methods inanalytical chemistry. Scranton: International TextbookCo.
  • Boese, B. L., & Lee, H. (1992). Synthesis of methods topredict bioaccumulation of sediment pollutants.Environmental Research Laboratory.
  • Bolat, K., & Kara, Ö. (2017). Bitki besin elementleri:kaynakları, işlevleri, eksik ve fazlalıkları. Bartın OrmanFakültesi Dergisi, 19(9), 218-228.https://doi.org/10.24011/barofd.251313
  • Bonanno, G., & Giudice, R. L. (2010). Heavy metalbioaccumulation by the organs of Phragmites australis (common reed) and their potential use ascontamination indicators. Ecological Indicators, 10(3),639-645.https://doi.org/10.1016/j.ecolind.2009.11.002
  • Bonanno, G., & Vymazal, J. (2017). Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. Journal of Geochemical Exploration, 181, 22–30. https://doi.org/10.1016/j.gexplo.2017.06.018
  • Borowiak, K., Kanclerz, J., Mleczek, M., Lisiak, M., & Drzewiecka, K. (2016). Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem. Archives of Environmental Protection, 42(3), 47-57. https://doi.org/10.1515/aep-2016-0032
  • Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144(3), 967-975. https://doi.org/10.1016/j.envpol.2006.01.046
  • Burdur’daki Karataş Gölü Kurudu (2025). Virahaber. Erişim adresi: https://www.virahaber.com/burdurdaki-karatas-golu-kurudu-62232h.htm
  • Campbell, N. A., & Reece, J. B. (2021). Biology. (12. Baskı) Pearson Benjamn Cummings. Censi, P., Spoto, S. E., Saiano, F., Sprovieri, M., Mazzola, S., Nardone, G., Di Geronimo, S.I., Punturo, R., & Ottonello, D. (2006). Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere, 64(7), 1167-1176. https://doi.org/10.1016/j.chemosphere.2005.11.008
  • Chaplygin, V., Dudnikova, T., Chernikova, N., Fedorenko, A., Mandzhieva, S., Fedorenko, G., Sushkova, S., Nevidomskaya, D., Minkina, T., Sathishkumar, P., & Rajput, V.D. (2022). Phragmites australis cav. as a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. Chemosphere. 308, 136409. https://doi.org/10.1016/j.chemosphere.2022.136409
  • Charlesworth, S., De Miguel, E., & Ordonez, A. (2011). A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environmental Geochemistry and Health, 33, 103–123. https://doi.org/10.1007/s10653-010-9325-7
  • Çetin, B. (2009). The use of wetland of Karataş (Bahçeözü) Lake (Burdur-Karamanlı) and a geographical look at the emerging problems. New World Science Academy, 4(4), 157-174.
  • Demirezen, D., & Aksoy, A. (2006). Common hydrophytes as bioindicators of iron and manganese pollutions. Ecological Indicators, 6(2), 388-393.
  • Doğan, M. (2011). Akuatik makrofitlerde ağır metal akümülasyonu. Türk Bilimsel Derlemeler Dergisi, 4(2), 33-36.
  • Doğru, A., Altundağ, H., & Dündar, M.Ş. (2021). Bitkilerde ağır metal hiperakümülasyonu ve fitoremediasyon. Journal of Agricultural Biotechnology, 2(2), 32-55.
  • Duman, F. (2005). Sapanca ve Abant Gölü su, sediment ve sucul bitki örneklerindeki ağır metal konsantrasyonlarının karşılaştırmalı olarak incelenmesi [Doktora tezi, Ankara Üniversitesi]
  • Duman, F., Obalı, O., & Demirezen, D. (2006). Seasonal changes of metal accumulation and distribution in shining pondweed (Potamogeton lucens). Chemosphere, 65(11), 2145-2151. https://doi.org/10.1016/j.chemosphere.2006.06.036
  • Duman, F., Çiçek, M., & Sezen, G. (2007). Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology, 16(6), 457-463. https://doi.org/10.1007/s10646-007-0150-4.
  • Duman, F., Urey, E., & Koca, F. D. (2015). Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.). Environmental Science and Pollution Research, 22, 17886-17896. https://doi.org/10.1007/s11356-015-4979-4
  • Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1-42.
  • Ege, I. (2019). Burdur-Karamanlı arasında taş ocaklarındaki zamansal değişimin CBS teknolojisi ve uzaktan algılama ile incelenmesi. B. Gonencgil, T. A. Ertek, I. Akova & E. Elbaşı (Ed.), 1st Istanbul International Geography Congress Proceedings Book (s. 563–570). İstanbul, Türkiye: Istanbul University Press. https://doi.org/10.26650/PB/PS12.2019.002.055
  • Eid E. M., Shaltout, K. H., Al-Sodany, Y. M., Haroun, S. A., Galal, T. M., Ayad, H., Khedher, K.M., & Jensen, K. (2021). Temporal potential of Phragmites australis as a phytoremediator to remove Ni and Pb from water and sediment in Lake Burullus, Egypt. Bulletin of Environmental Contamination and Toxicology. 106, 516-527. https://doi.org/10.1007/s00128-021-03120-y
  • Eid, E.M., Shaltout, K.H., Al-Sodany, Y.M., Haroun, S. A., Galal, T.M., Ayed, H., Khedher, K.M., & Jensen, K. (2020). Common reed (Phragmites australis (Cav.) trin. ex Steudel) as a candidate for predicting heavy metal contamination in Lake Burullus, Egypt: A biomonitoring approach. Ecological Engineering. 148, 105787. https://doi.org/10.1016/j.ecoleng.2020.105787
  • Ekeocha, C., & Anunuso, C. (2016). Comparative analysis of index of geoaccumulation of heavy metals in some selected auto mechanic soils in Abuja, Nigeria. Journal of Chemical Society of Nigeria, 41(2), 96-102.
  • Ellis, K. V., White, G., & Adn Warn, A, E. (1989). Surface Water Pollution and Its Control Antony, Machillan.
  • Fan, H., Chen, S., Li, Z., Liu, P., Xu, C., & Yang, X. (2020). Assessment of heavy metals in water, sediment and shellfish organisms in typical areas of the Yangtze River Estuary, China. Marine Pollution Bulletin, 151, 110864. https://doi.org/10.1016/j.marpolbul.2019.110864
  • Fisher, R.A. (1928). The general sampling distribution of the multiple correlation coefficient. Proceeding of the Royal Society A, 121(788), 654–673.
  • Hamidian, A. H., Jafari Ozumchelouei, E., & Atashgahi, M. (2024). Assessment of Metal Pollution in Sediments and Their Bioaccumulation in Phragmites australis from Shoor River, Iran. Soil and Sediment Contamination: An InternationalJournal. https://doi.org/10.1080/15320383.2024.2420182
  • Heidarzadeh, M., Abdi, N., Farahani, J.V., Ahmadi, A., & Toranjzar, H. (2020). The effect of Typha latifolia L. on heavy metals phytoremediation at the urban and industrial wastewater entrance to the Meighan wetland, Iran. Journal of Applied Research in Water and Wastewater, 14, 167-171.
  • Henry, J.R. (2000). An overview of the phytoremediation of lead and mercury. National Network of Environmental Management Studies (NNEMS) Fellow, 1–31.
  • Hu, H. (2000). Exposure to metals. Primary Care, 27(4), 983-996. https://doi.org/10.1016/s0095-4543(05)70185-8.
  • Işıldar, H. T., & Erçoşkun, Ö. Y. (2021). Göller Yöresinde Sürdürülebilirlik ve Dirençlilik. Journal of Management Theory and Practices Research, 2(2), 89-116.
  • Karataş Gölü, 2025. Vikipedi. Erişim adresi: https://tr.wikipedia.org/wiki/Karata%C5%9F_G%C3%B6l%C3%BC
  • Kaya, D. C. Ç., (2021). Beyşehir, Eğirdir, Çivril, Suğla, Karataş, Kovada ve Gölhisar göllerinin su, sedimen ve balık (Carassius gibelio) örneklerinde bazı ağır metal konsantrasyonlarının belirlenmesi [Doktora tezi, Mehmet Akif Ersoy Üniversitesi]
  • Kazancı, N., Girgin S. Ç., Dügel M., Oğuzkurt D., Mutlu B., Dere Ş., Barlas M., & Özçelik M. (1999). Türkiye İç Suları Araştırmaları Dizisi IV: Köyceğiz, Beyşehir, Eğirdir, Akşehir, Eber, Çorak, Kovada, Yarışlı, Bafa, Salda, Karataş, Çavuşçu Gölleri, Küçük ve Büyük Menderes Deltası, Güllük Sazlığı, Karamuk Bataklığı'nın Limnolojisi, Çevre Kalitesi ve Biyolojik Çeşitliliği. Form Ofset.
  • Kır, İ., Tekin-Özan, S., & Barlas, M. (2006). Heavy metal concentrations in organs of Rudd, Scardinus erythrophthalmus L., 1758 populating Lake Karatas-Turkey. Fresenius Environmental Bulletin, 15(1), 25-29.
  • Klink, A. (2017). A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Environmental Science and Pollution Research, 24, 3843-3852. https://doi.org/10.1007/s11356-016-8135-6
  • Kumari, M., & Tripathi, B.D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80–86. https://doi.org/10.1016/j.ecoenv.2014.10.034
  • Kurt, B. (2006). Türkiye’nin Önemli Doğa Alanları. Ankara: Doğa Derneği.
  • Kuruyan Karataş Gölü tekrar su tutmaya başladı, 2025. Doğruhaber. Erişim adresi: https://dogruhaber.com.tr/haber/826271-kuruyan-karatas-golu-tekrar-su-tutmaya-basladi
  • Laing, G.D., Tack, F.M.G. & Verloo, M.G. (2003). Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Analytica Chimica Acta, 497(1-2), 191-198.
  • Lee, H. I. I. (1992). Models, muddles, and mud: Predicting bioaccumulation of sediment-associated pollutants. In: G.A. Burton (Eds.), Sediment Toxicity Assessment (pp. 267-289). Lewis Publishers, Boca Raton.
  • Liu, J., Yin, P., Chen, B., Gao, F., Song, H., & Li, M. (2016). Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Marine Pollution Bulletin, 109(1), 633-639. https://doi.org/10.1016/j.marpolbul.2016.05.020
  • Macek, T., Kotrba, P., Svatos, A., Novakova, M., Demnerova, K., & Mackova, M. (2008). Novel roles for genetically modified plants in environmental protection. Trends in Biotechnology, 26, 146–152. https://doi.org/10.1016/j.tibtech.2007.11.009
  • MEB. (2012). Tarım Teknolojileri Su Kenarı ve Su İçi Süs Bitkileri Yetiştiriciliği, 622B00182, 68 s, Ankara.
  • Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/Technology, 7, 47-59. https://doi.org/10.1007/s11157-007-9125-4
  • Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2010). Application of chemometrics to analysis of soil pollutants. Trends in Analytical Chemistry, 29, 430-445. https://doi.org/10.1016/j.trac.2010.02.009
  • Mukhopadhyay, S., & Maiti, S. K. (2010). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research, 8(3), 207-222.
  • OpenAl. (2025). Phragmites australis bitkisinin yapay zeka destekli çizimi (Yapay zeka tarafından oluşturulmuş görsel). ChatGPT. https://chat.openai.com
  • Orman ve Su İşleri Bakanlığı (2017). Göller ve Sulak Alanlar Eylem Planı 2017-2023.
  • Oruçoğlu, K., & Beyhan, M. (2019). Göller Bölgesi Göllerinde Ağır Metal Kirliliğinin Değerlendirilmesi. Bilge International Journal of Science and Technology Research, 3(1), 10-20. https://doi.org/10.30516/bilgesci.449984
  • Özçelik, Ş. (2022). Eğirdir Gölü'nün suyunda, sedimentinde ve göldeki Phragmites australis (Cav.) Trin. Ex. Steudel ile Typha angustifolia (L.) örneklerindeki ağır metal düzeylerinin belirlenmesi. [Doktora tezi, Süleyman Demirel Üniversitesi].
  • Özçelik, Ş., & Tekin-Özan, S. (2023). Seasonal variations of some heavy metals in common reed (Phragmites australis (Cav.) Trin. Ex. Steudel) and narrow leaved cattail (Typha angustifolia L.) in Eğirdir Lake (Turkey) and the possibility of using for phytoremediation of these macrophytes. Environment Science and Pollution Research, 30, 112194-112205. https://doi.org/10.1007/s11356-023-30226-z
  • Parveen, N., Zaidi, S., Danish, M., 2016. Support vector regression model for predicting the sorption capacity of lead (II). Perspectives in Science, 8, 629–631. https://doi.org/10.1016/j.pisc.2016.06.040
  • Pbugmacher, S., Geissler, K., & Steinberg, C. (1999). Activity of Phase I and Phase II Detoxication Enzymes in Different Cormus Parts of Phragmites australis. Ecotoxicology and Environmental Safety, 42(1), 62-66. https://doi.org/10.1006/eesa.1998.1727
  • Plaster, E. J. (1992). Soil Science and Management. Delmar Publishers Inc.
  • Prasad, M. N. V. (2003). Phytoremediation of metal-polluted ecosystems: Hype for commercialization. Russian Journal of Plant Physiology, 50(3), 764-780.
  • Rascio, N. (1977). Metal accumulation by some plants growing on zinc-mine deposits. Oikos, 29, 250–253.
  • Rezania, S., Park, J., Rupani, P. F., Darajeh, N., Xu, X., & Shahrokhishahraki, R. (2019). Phytoremediation potential and control of Phragmites australis as a green phytomass: an overview. Environmental Science and Pollution Research, 26(8), 7428–7441. https://doi.org/10.1007/s11356-019-04300-4
  • Sancer, O., & Tekin-Özan, S. (2016). Seasonal changes of metal accumulation in water, sediment and Phragmites australis (Cav.) Trin. ex Steudel growing in Lake Kovada (Isparta, Türkiye). Süleyman Demirel Üniversitesi Journal of Science, 11(2), 45-60.
  • Sawidis, T., Chettri, M.K., Zachariadis, G.A. & Stratis, J.A. (1995). Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology and Environmental Safety, 32, 73-80.
  • Seçmen, Ö., & Leblebici, E. (2008). Türkiye Sulak Alan Bitkileri ve Bitki Örtüsü. Ege Üniversitesi Fen Fakültesi Yayınları.
  • Shine, J., Ryan, D., Limon, J., & Ford, T. (1998). Annual cycle of heavy metals in a tropical lake–Lake Chapala, Mexico. Journal of Environmental Science Health, Part A, 33, 23-43.
  • Singh, S., Parihar, P., Singh, R., Singh, V.P. & Prasad, S.M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143. https://doi.org/10.3389/fpls.2015.01143
  • Takarina, N. D., & Pin, T. G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, 21(2), 77-81. https://doi.org/10.7454/mss.v21i2.7308
  • Tanyolaç, J. (2009). Limnoloji (6. Baskı), Hatipoğlu yayınları.
  • Tekin-Özan, S., Özçelik. Ş., & Özan, C. (2022). The determination of heavy metals in Eurasian Watermilfoil (Myriophyllum spicatum L.) plant growing in the Eğirdir Lake. Journal of Yalvaç Academy, 7(1), 46-57.
  • Tekin-Özan, S. (2023). Karataş Gölü (Burdur)' nün suyunda, sedimentinde ve gölde yetişen kamış (Phragmites australıs (Cav) Trin.Ex Steudel) bitkisinde ağır metal düzeylerinin belirlenmesi. Proje Sonuç Raporu. Proje No: FYL-2019-7384. SDÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi.
  • Tekin-Özan, S., Tunç, M., & Bakioğlu-Acar, B. (2024). Evaluation of some heavy metals and selenium pollution in Karataş Lake (Burdur/Türkiye) using various pollution indices and statistical analysis. Marine Pollution Bulletin, 199, 155927. https://doi.org/10.1016/j.marpolbul.2023.115927
  • Terry, N., & Bañuelos, G. (2000). Phytoremediation of contaminated soil and water. CRC Press. https://doi.org/10.1201/9780367803148
  • Topal, M. (2021). Investigation of some heavy metal accumulation ability of Phragmites australis from Poultry Slaughterhouse Wastewaters. Arabian Journal of Science and Engineering. 46, 115-122. https://doi.org/10.1007/s13369-020-04825-8
  • USEPA. (2001). Methods for Collection Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual: EPA 823-B-01-002; US. Environmental Protection Agency, Office ofWater, Washington, D.C.
  • Usero, J., Izquierdo, C., Morillo, J., & Gracia, I. (2004). Heavy metals in fish (Solea vulgaris, Anguilla anguilla and Liza aurata) from salt marshes on the southern Atlantic coast of Spain. Environment International, 29(7), 949-956.
  • Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chemical Engineering Journal, 290, 232-242. https://doi.org/10.1016/j.cej.2015.12.108
  • Kuruyan Karataş Gölü tekrar su tutmaya başladı, 2025. Doğruhaber. Erişim adresi: https://dogruhaber.com.tr/haber/826271-kuruyan-karatas-golu-tekrar-su-tutmaya-basladi
  • Wei, C.Y., Chen, T.B., & Huang, Z.C. (2002). Cretan bake (Pteris cretica L): an arsenic accumulating Plant. Acta Ecology Sinica, 22, 777-782.
  • Xu, J., Chen, Y., Zheng, L., Liu, B., Liu, J., & Wang, X. (2018). Assessment of heavy metal pollution in the sediment of the main tributaries of Dongting Lake, China. Water, 10(8), 1060. https://doi.org/10.3390/w10081060
  • Vu, C. T., Lin, C., Nguyen, K. A., Shern, C. C., & Kuo, Y. M. (2018). Ecological risk assessment of heavy metals sampled in sediments and water of the Houjing River, Taiwan. Environmental Earth Sciences, 77, 388. https://doi.org/10.1007/s12665-018-7573-5
  • Yabanlı, M., Yozukmaz, A., & Sel, F. (2014). Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (haloragaceae): An example of Kadın Creek (Muğla, Turkey). Brazilian Archives of Biology and Technology, 57(3), 434-440. https://doi.org/10.1590/S1516-8913201401962
  • Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Khan, S. A. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering, 120, 274-298. https://doi.org/10.1016/j.ecoleng.2018.05.039
  • Yalçuk, A., Pakdil, N.B., & Kantürer, O. (2014). Investigation of the effects of fish farms in Bolu (Turkey) on aquatic pollution. International Journal of Agricultural and Food Research, 3(1), 1-13.
  • Yang, X., Feng, Y., He, Z., & Stoffella, P.J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 339-353.https://doi.org/10.1016/j.jtemb.2005.02.007
  • Yarar, M., & Magnin, G. (1997). Türkiye’nin önemli kuşalanları. İstanbul: Doğal Hayatı Koruma DerneğiYayınları.
  • Yarıcı, M. A., & Yağbasan, Ö. (2018). Burdur GölleriHavzası’nın Morfolojik Özelliklerinin BelirlenmesindeCoğrafi Bilgi Sistemlerinin Kullanımı. In International Geography Symposium on the 30th Anniversary ofTUCAUM.
  • Yavuz, O., & Sarıgül, N. (2016). Toprak ve suculortamlardaki ağır metal kirliliği ve ağır metal dirençlimikroorganizmalar. Mehmet Akif Ersoy Üniversitesi FenBilimleri Enstitüsü Dergisi, 7(1), 44–51.
  • Zayed, A., Gowthaman, S., & Terry, N. (1998).Phytoaccumulation of Trace Elements by WetlandPlants: I. Duckweed. Journal of Environmental Quality,27(3), 715-721.
  • Zhang, C., Shan, B., Tang, W., Wang, C., & Zhang, L. (2019).Identifying sediment associated toxicity in riversaffected by multiple pollutants from the contaminantbioavailability. Ecotoxicology and EnvironmentalSafety. 171, 84-91.https://doi.org/10.1016/j.ecoenv.2018.12.075
  • Zhang, F., Yan, X., Zeng, C., Zhang, M., Shrestha, S.,Devkota, L. P., & Yao, T. (2012). Influence of trafficactivity on heavy metal concentrations of roadsidefarmland soil in mountainous areas. International Journal of Environmental Research and Public Health,9(5), 1715–1731.https://doi.org/10.3390/ijerph9051715
  • Zhulidov, A. V. (1996). Heavy metals in Russian Wetlands.In: N. M. Van Straalen & D. A. Krivolutsky (Eds.),Bioindicator Systems for Soil Pollution (pp. 233-247).Kluwer Academic Publishers.
There are 101 citations in total.

Details

Primary Language Turkish
Subjects Botany (Other)
Journal Section Research Paper
Authors

Selda Tekin Özan 0000-0002-8756-8859

Project Number FYL-2019-7384
Publication Date June 8, 2025
Submission Date February 27, 2025
Acceptance Date April 14, 2025
Published in Issue Year 2025 Volume: 16 Issue: 1

Cite

APA Tekin Özan, S. (2025). Karataş Gölü (Burdur)’nde Yetişen Su Kamışının (Phragmites australis (Cav.) Trin.Ex.Steudel) Bazı Ağır Metal Konsantrasyonlarının ve Fitoremediasyon Potansiyelinin Araştırılması. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(1), 14-28. https://doi.org/10.29048/makufebed.1648211