Research Article
BibTex RIS Cite

THE RELATIONSHIP BETWEEN NON-PERFORMING LOANS AND MACROECONOMIC FACTORS IN TURKEY

Year 2021, , 609 - 629, 27.07.2021
https://doi.org/10.30798/makuiibf.691534

Abstract

Non-performing loans are expressed as the first warning of a possible break in the financial system; it is expressed as an early signal of a possible financial or economic crisis. At the same time, changes in macroeconomic indicators as a result of developments in the economy also affect the payments of loan holders; impact the non-performing loan ratio (NPL). The main purpose of this study is to investigate how macroeconomic factors affect the non-performing loan ratio. According to the estimation results of the ARDL Model estimated with quarterly data covering the period 2005Q1-2019Q3, economic growth and inflation decreased the NPL ratio; It was determined that unemployment and exchange rate increased the non-performing loan ratio. According to Toda-Yamamoto causality test findings, there is a causality relationship from all variables to non-performing loans; The existence of a bi-directional causality relationship with unemployment rate has been determined.

References

  • Abid, L., Ouertani, M. J. ve Ghorbel, S. (2014). Macroeconomic and Bank Specific Determinants of Household’s Non-Performing Loans in Tunisia: a Dynamic Panel Data. Procedia Economics and Finance, 13, 58-68. https://doi.org/10.1016/S2212-5671(14)00430-4.
  • Al-Khazali, O. M. ve Mirzaei, A. (2017). The impact of oil price movements on bank non-performing loans: Global evidence from oil-exporting countries. Emerging Markets Review, 31, 193-208. http://dx.doi.org/10.1016/j.ememar.2017.05.006.
  • Bankalarca Kredilerin ve Diğer Alacakların Niteliklerinin Belirlenmesi ve Bunlar İçin Ayrılacak Karşılıklara İlişkin Usul ve Esaslar Hakkında Yönetmelik. (2006). Ankara: Resmi Gazete (26333 sayılı). Erişim Adresi: http://www.resmigazete.gov.tr/eskiler/2006/11/20061101.htm.
  • Beck, R., Jakubik, P. ve Piloiu, A. (2013). Non-Performing Loans: What Matters in Addition to the Economic Cycle? ECB Working Paper No: 1515). European Central Bank. https://ssrn.com/abstract=2214971.
  • De Bock, R. ve Demyanets, A. (2012). Bank Asset Quality in Emerging Markets: Determinants and Spillovers (IMF Working Paper No: 12/71), International Monetary Fund. https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Bank-Asset-Quality-in-Emerging-Markets-Determinants-and-Spillovers-25766.
  • Dimitrios, A., Helen, L. ve Mike, T. (2016). Determinants of non-performing loans: Evidence from Euro-area countries. Finance Research Letters, 18, 116-119. https://doi.org/10.1016/j.frl.2016.04.008.
  • Espinoza, R. A. ve Prasad, A. (2010). Nonperforming Loans in the GCC Banking System and Their Macroeconomic Effects (IMF Working Paper No: 10/224), International Monetary Fund, 1-24. https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Nonperforming-Loans-in-the-GCC-Banking-System-and-their-Macroeconomic-Effects-24258.
  • Genç, E. ve Şaşmaz, M. Ü. (2016). Takipteki Banka Kredilerinin Makroekonomik Belirleyicileri: Ticari Krediler Örneği. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 36, 119-129. http://dergisosyalbil.selcuk.edu.tr/susbed/article/view/1293.
  • Ghosh, A. (2015). Banking-industry specific and regional economi determinants of non-performing loans: Evidence from US states. Journal of Financial Stability, 20, 93-104. https://doi.org/10.1016/j.jfs.2015.08.004.
  • Ghosh. A. (2017). Sector-specific analysis of non-performing loans in the US banking system and their macroeconomic impact. Journal of Economics and Business, 93, 29-45. https://doi.org/10.1016/j.jeconbus.2017.06.002.
  • Granger, C.W.J. (1969), Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424-438. https://doi.org/10.2307/1912791.
  • Grigoli, F., Mansilla, M. ve Saldias, M. (2018). Macro-financial linkages and heterogeneous non-performing loans projections: An application to Ecuador. Journal of Banking & Finance, 97, 130-141. https://doi.org/10.1016/j.jbankfin.2018.09.023.
  • Jakubik, P. ve Reininger, T. (2013). Determinants of of Nonperforming Loans in Central, Eastern and Southeastern Europe. Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), 3, 48-66. https://ideas.repec.org/a/onb/oenbfi/y2013i3b3.html.
  • Klein, N. (2013). Non-Performing Loans in CESEE: Determinants and Impact on Macroeconomic Performance (IMF Working Paper No: 13/72). International Monetary Fund. https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Non-Performing-Loans-in-CESEE-Determinants-and-Impact-on-Macroeconomic-Performance-40413.
  • Konstantakis, K. N., Michaelides, P. G. ve Vouldis, A. T. (2016). Non performing loans (NPLs) in a crisis economy: Long-run equilibrium analysis with a real time VEC model for Greece (2001–2015), Physica A: Statistical Mechanics and its Applications, 451, 149-161. https://doi.org/10.1016/j.physa.2015.12.163.
  • Macit, F. (2012). What Determines The Non-Performing Loans Ratio: Evidence from Turkish Commercial Banks. CEA Journal of Economics, 7(1), 33-40. https://journal.cea.org.mk/index.php/ceajournal/article/view/108.
  • Macit, F. ve Keçeli, B. (2012). Takipteki Kredi Oranını Etkileyen Faktörler: Türkiye'de Katılım Bankaları Örneği. Avrasya İncelemeleri Dergisi, 1 (1), 193-207. http://istanbul.dergipark.gov.tr/iuavid/issue/23607/251322.
  • Messai, A. S. ve Jouni, F. (2013). Micro and Macro Determinants of Non-performing Loans. International Journal of Economics and Financial Issues, 3(4), 852-860. http://econjournals.com/index.php/ijefi/article/view/517.
  • Radivojevic, N., Cvijanovic, D. Sekulic, D., Pavlovic, D., Jovic, S. ve Maksimovic, G. (2019). Econometric model of non-performing loans determinants. Physica A: Statistical Mechanics and its Applications, 520, 481-488. https://doi.org/10.1016/j.physa.2019.01.015.
  • Ranjan, R. ve Dhal, S. C. (2003). Non-Performing Loans and Terms of Credit of Public Sector Banks in India: An Empirical Assessment, Reserve Bank of India Occasional Papers, 24(3), 81-121. https://www.rbi.org.in/upload/Publications/PDFs/60610.pdf#page=87.
  • Reinhart, C. M. ve Rogoff, K. S. (2011). From Financial Crash to Debt Crisis. American Economic Review, 101(5), 1676–1706. https://doi.org/10.1257/aer.101.5.1676.
  • Rinaldi, L. ve Sanchis-Arellano, A. (2006). Household Debt Sustainability: What Explains Household Non-Performing Loans? An Empirical Analysis (ECB Working Paper No: 570). European Central Bank. https://ssrn.com/abstract=872528.
  • Shu, C. (2002). The Impact of Macroeconomic Environment on the Asset Quality of Hong Kong's Banking Sector. Hong Kong Monetary Authority.
  • Skaricha, B. (2014). Determinants of non-performing loans in Central and Eastern European countries. Financial Theory and Practice, 38 (1) 37-59. https://doi.org/10.3326/fintp.38.1.2.
  • Sorge, M. (2004). Stress-Testing Financial Systems: An Overview of Current Methodologies (BIS Working Paper No. 165). Bank for International Settlements. http://dx.doi.org/10.2139/ssrn.759585.
  • Tanınmış Yücememiş, B. ve Sözer, İ. A. (2011). Bankalarda Takipteki Krediler: Türk Bankacılık Sektöründe Takipteki Kredilerin Tahminine Yönelik Bir Model Uygulaması. Finansal Araştırmalar ve Çalışmalar Dergisi, 3(5), 43-56. http://dergipark.gov.tr/marufacd/issue/505/4587.
  • Tekşen, Ö. ve Çelik, M. (2018). Kredi Türlerinin Krediler Oranına Etkisi: Varlık Temelli Krediler Yüksek Takipteki Kredi Oranları için Bir Kalkan Mı? Muhasebe ve Finansman Dergisi, 79, 95-110. https://dx.doi.org/10.25095/mufad.438778.
  • Toda, H. Y. ve Yamamoto, T. (1995). Statistical Inference in Vector Autoregressions With Possibly Integrated Processes. Journal of Econometrics, 66(1-2), 225-250. https://doi.org/10.1016/0304-4076(94)01616-8.
  • Us, V. (2017). Dynamics of non-performing loans in the Turkish banking sector by an ownership breakdown: The impact of the global crisis. Finance Research Letters, 20, 109-117. http://dx.doi.org/10.1016/j.frl.2016.09.016.
  • Vogiazas, S. D., & Nikolaidou, E. (2011). Investigating the Determinants of Nonperforming Loans in the Romanian Banking System: An Empirical Study with Reference to the Greek Crisis. Economics Research International, Sayı 2011, 1-13. http://dx.doi.org/10.1155/2011/214689.
  • Vogiazas, S. D., & Nikolaidou, E. (2014). Credit Risk Determinants for the Bulgarian Banking System. International Advances in Economic Research, 20(1), 87-102. https://doi.org/10.1007/s11294-013-9444-x.
  • Yüksel, S. (2016). Bankaların Takipteki Krediler Oranını Belirleyen Faktörler: Türkiye İçin Bir Model Önerisi. Bankacılar Dergisi, 98, 41-56. https://www.tbb.org.tr/Content/Upload/dergiler/dosya/73/Bankacilar_Dergisi_98.Sayi.pdf.

TÜRKİYE'DE TAKİPTEKİ BANKA KREDİLERİ İLE MAKROEKONOMİK FAKTÖRLER ARASINDAKİ İLİŞKİ

Year 2021, , 609 - 629, 27.07.2021
https://doi.org/10.30798/makuiibf.691534

Abstract

Takipteki banka kredileri, finansal sistemde yaşanabilecek bir kırılmanın ilk uyarıcısı; olası bir finansal veya ekonomik krizin erken sinyali olarak ifade edilmektedir. Aynı zamanda ekonomide yaşanan gelişmeler neticesinde makroekonomik göstergelerde meydana gelen değişmeler de kredi sahiplerinin ödemelerini etkilemekte; takipteki kredi oranını etkilemektedir. Bu çalışmanın temel amacı, makroekonomik faktörlerin takipteki kredi oranını nasıl etkilediğini araştırmaktır. 2005Q1-2019Q3 dönemini kapsayan çeyreklik verilerle tahmin edilen ARDL Modeli tahmin sonuçlarına göre ekonomik büyüme ve enflasyonun takibe düşen kredi oranı azalttığı; işsizlik ve döviz kurunun ise takipteki kredi oranını artırdığı belirlenmiştir. Toda-Yamamoto nedensellik testi bulgularına göre, tüm değişkenlerden takipteki kredilere doğru bir nedensellik ilişkisi olduğu; işsizlik oranı ile çift yönlü nedensellik ilişkisinin varlığı tespit edilmiştir.

References

  • Abid, L., Ouertani, M. J. ve Ghorbel, S. (2014). Macroeconomic and Bank Specific Determinants of Household’s Non-Performing Loans in Tunisia: a Dynamic Panel Data. Procedia Economics and Finance, 13, 58-68. https://doi.org/10.1016/S2212-5671(14)00430-4.
  • Al-Khazali, O. M. ve Mirzaei, A. (2017). The impact of oil price movements on bank non-performing loans: Global evidence from oil-exporting countries. Emerging Markets Review, 31, 193-208. http://dx.doi.org/10.1016/j.ememar.2017.05.006.
  • Bankalarca Kredilerin ve Diğer Alacakların Niteliklerinin Belirlenmesi ve Bunlar İçin Ayrılacak Karşılıklara İlişkin Usul ve Esaslar Hakkında Yönetmelik. (2006). Ankara: Resmi Gazete (26333 sayılı). Erişim Adresi: http://www.resmigazete.gov.tr/eskiler/2006/11/20061101.htm.
  • Beck, R., Jakubik, P. ve Piloiu, A. (2013). Non-Performing Loans: What Matters in Addition to the Economic Cycle? ECB Working Paper No: 1515). European Central Bank. https://ssrn.com/abstract=2214971.
  • De Bock, R. ve Demyanets, A. (2012). Bank Asset Quality in Emerging Markets: Determinants and Spillovers (IMF Working Paper No: 12/71), International Monetary Fund. https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Bank-Asset-Quality-in-Emerging-Markets-Determinants-and-Spillovers-25766.
  • Dimitrios, A., Helen, L. ve Mike, T. (2016). Determinants of non-performing loans: Evidence from Euro-area countries. Finance Research Letters, 18, 116-119. https://doi.org/10.1016/j.frl.2016.04.008.
  • Espinoza, R. A. ve Prasad, A. (2010). Nonperforming Loans in the GCC Banking System and Their Macroeconomic Effects (IMF Working Paper No: 10/224), International Monetary Fund, 1-24. https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Nonperforming-Loans-in-the-GCC-Banking-System-and-their-Macroeconomic-Effects-24258.
  • Genç, E. ve Şaşmaz, M. Ü. (2016). Takipteki Banka Kredilerinin Makroekonomik Belirleyicileri: Ticari Krediler Örneği. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 36, 119-129. http://dergisosyalbil.selcuk.edu.tr/susbed/article/view/1293.
  • Ghosh, A. (2015). Banking-industry specific and regional economi determinants of non-performing loans: Evidence from US states. Journal of Financial Stability, 20, 93-104. https://doi.org/10.1016/j.jfs.2015.08.004.
  • Ghosh. A. (2017). Sector-specific analysis of non-performing loans in the US banking system and their macroeconomic impact. Journal of Economics and Business, 93, 29-45. https://doi.org/10.1016/j.jeconbus.2017.06.002.
  • Granger, C.W.J. (1969), Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424-438. https://doi.org/10.2307/1912791.
  • Grigoli, F., Mansilla, M. ve Saldias, M. (2018). Macro-financial linkages and heterogeneous non-performing loans projections: An application to Ecuador. Journal of Banking & Finance, 97, 130-141. https://doi.org/10.1016/j.jbankfin.2018.09.023.
  • Jakubik, P. ve Reininger, T. (2013). Determinants of of Nonperforming Loans in Central, Eastern and Southeastern Europe. Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), 3, 48-66. https://ideas.repec.org/a/onb/oenbfi/y2013i3b3.html.
  • Klein, N. (2013). Non-Performing Loans in CESEE: Determinants and Impact on Macroeconomic Performance (IMF Working Paper No: 13/72). International Monetary Fund. https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Non-Performing-Loans-in-CESEE-Determinants-and-Impact-on-Macroeconomic-Performance-40413.
  • Konstantakis, K. N., Michaelides, P. G. ve Vouldis, A. T. (2016). Non performing loans (NPLs) in a crisis economy: Long-run equilibrium analysis with a real time VEC model for Greece (2001–2015), Physica A: Statistical Mechanics and its Applications, 451, 149-161. https://doi.org/10.1016/j.physa.2015.12.163.
  • Macit, F. (2012). What Determines The Non-Performing Loans Ratio: Evidence from Turkish Commercial Banks. CEA Journal of Economics, 7(1), 33-40. https://journal.cea.org.mk/index.php/ceajournal/article/view/108.
  • Macit, F. ve Keçeli, B. (2012). Takipteki Kredi Oranını Etkileyen Faktörler: Türkiye'de Katılım Bankaları Örneği. Avrasya İncelemeleri Dergisi, 1 (1), 193-207. http://istanbul.dergipark.gov.tr/iuavid/issue/23607/251322.
  • Messai, A. S. ve Jouni, F. (2013). Micro and Macro Determinants of Non-performing Loans. International Journal of Economics and Financial Issues, 3(4), 852-860. http://econjournals.com/index.php/ijefi/article/view/517.
  • Radivojevic, N., Cvijanovic, D. Sekulic, D., Pavlovic, D., Jovic, S. ve Maksimovic, G. (2019). Econometric model of non-performing loans determinants. Physica A: Statistical Mechanics and its Applications, 520, 481-488. https://doi.org/10.1016/j.physa.2019.01.015.
  • Ranjan, R. ve Dhal, S. C. (2003). Non-Performing Loans and Terms of Credit of Public Sector Banks in India: An Empirical Assessment, Reserve Bank of India Occasional Papers, 24(3), 81-121. https://www.rbi.org.in/upload/Publications/PDFs/60610.pdf#page=87.
  • Reinhart, C. M. ve Rogoff, K. S. (2011). From Financial Crash to Debt Crisis. American Economic Review, 101(5), 1676–1706. https://doi.org/10.1257/aer.101.5.1676.
  • Rinaldi, L. ve Sanchis-Arellano, A. (2006). Household Debt Sustainability: What Explains Household Non-Performing Loans? An Empirical Analysis (ECB Working Paper No: 570). European Central Bank. https://ssrn.com/abstract=872528.
  • Shu, C. (2002). The Impact of Macroeconomic Environment on the Asset Quality of Hong Kong's Banking Sector. Hong Kong Monetary Authority.
  • Skaricha, B. (2014). Determinants of non-performing loans in Central and Eastern European countries. Financial Theory and Practice, 38 (1) 37-59. https://doi.org/10.3326/fintp.38.1.2.
  • Sorge, M. (2004). Stress-Testing Financial Systems: An Overview of Current Methodologies (BIS Working Paper No. 165). Bank for International Settlements. http://dx.doi.org/10.2139/ssrn.759585.
  • Tanınmış Yücememiş, B. ve Sözer, İ. A. (2011). Bankalarda Takipteki Krediler: Türk Bankacılık Sektöründe Takipteki Kredilerin Tahminine Yönelik Bir Model Uygulaması. Finansal Araştırmalar ve Çalışmalar Dergisi, 3(5), 43-56. http://dergipark.gov.tr/marufacd/issue/505/4587.
  • Tekşen, Ö. ve Çelik, M. (2018). Kredi Türlerinin Krediler Oranına Etkisi: Varlık Temelli Krediler Yüksek Takipteki Kredi Oranları için Bir Kalkan Mı? Muhasebe ve Finansman Dergisi, 79, 95-110. https://dx.doi.org/10.25095/mufad.438778.
  • Toda, H. Y. ve Yamamoto, T. (1995). Statistical Inference in Vector Autoregressions With Possibly Integrated Processes. Journal of Econometrics, 66(1-2), 225-250. https://doi.org/10.1016/0304-4076(94)01616-8.
  • Us, V. (2017). Dynamics of non-performing loans in the Turkish banking sector by an ownership breakdown: The impact of the global crisis. Finance Research Letters, 20, 109-117. http://dx.doi.org/10.1016/j.frl.2016.09.016.
  • Vogiazas, S. D., & Nikolaidou, E. (2011). Investigating the Determinants of Nonperforming Loans in the Romanian Banking System: An Empirical Study with Reference to the Greek Crisis. Economics Research International, Sayı 2011, 1-13. http://dx.doi.org/10.1155/2011/214689.
  • Vogiazas, S. D., & Nikolaidou, E. (2014). Credit Risk Determinants for the Bulgarian Banking System. International Advances in Economic Research, 20(1), 87-102. https://doi.org/10.1007/s11294-013-9444-x.
  • Yüksel, S. (2016). Bankaların Takipteki Krediler Oranını Belirleyen Faktörler: Türkiye İçin Bir Model Önerisi. Bankacılar Dergisi, 98, 41-56. https://www.tbb.org.tr/Content/Upload/dergiler/dosya/73/Bankacilar_Dergisi_98.Sayi.pdf.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Deniz Sevinç 0000-0002-6223-9450

Publication Date July 27, 2021
Submission Date February 19, 2020
Published in Issue Year 2021

Cite

APA Sevinç, D. (2021). TÜRKİYE’DE TAKİPTEKİ BANKA KREDİLERİ İLE MAKROEKONOMİK FAKTÖRLER ARASINDAKİ İLİŞKİ. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 8(2), 609-629. https://doi.org/10.30798/makuiibf.691534

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.