Research Article
BibTex RIS Cite

GRİ TAHMİN VE BOX-JENKINS YÖNTEMLERİ İLE ANTALYA LİMANI İÇİN AYLIK KONTEYNER TALEP TAHMİNİ

Year 2020, Volume: 7 Issue: 3, 540 - 562, 30.11.2020
https://doi.org/10.30798/makuiibf.689532

Abstract

Konteyner taşımacılığının, denizyolu ticaretindeki önemi her geçen gün artmaktadır. Konteyner hacminin etkili tahmini ise liman planlaması ve işletimi için bir karar desteği sağlamaktadır. Bu nedenle liman yönetimlerinin geleceğe yönelik planları açısından tahminleme çalışmaları önemli bir rol oynamaktadır. Bu çalışmada, Antalya’da bulunan Port Akdeniz Limanı için yapılan tahmin modellerinde Ocak 2008-Aralık 2017 (120 ay) dönemi konteyner istatistikleri veri seti olarak kullanılmıştır. Liman işletmesinin yük talep tahmini, konteyner bazında ve mevsimsel farklılıklar dikkate alınarak, Ocak 2018-Aralık 2019 (24 ay) dönemi için yapılmıştır. Gri Tahmin ve Box-Jenkins yöntemlerinin kullanıldığı çalışmada, konteyner tahminleri Gri Model (1,1) ve ARIMA (0,1,0)x(0,1,1)12 modelleri ile analiz edilmiştir. Tahmin sonuçları başarı kriterleri ile değerlendirildiğinde, Gri Model (1,1)’in MAPE ve MAE değerlerinin daha düşük olduğu gözlemlenmiştir. Ancak hem RMSE ve MSE hem de sapma değerleri dikkate alındığında ise; ARIMA (0,1,0)x(0,1,1)12 modelinin daha iyi ve uygun tahmin değerleri verdiği tespit edilmiştir.

References

  • 1- Akar, O. ve Esmer, S. (2015). Cargo Demand Analysis of Container Terminals in Turkey, Journal of ETA Maritime Science, 3(2), 117-122.
  • 2- Bayraktutan, Y. ve Özbilgin, M. (2013). Limanların Uluslararası Ticarete Etkisi ve Kocaeli Limanlarının Ülke Ekonomisindeki Yeri, Kocaeli Üniversitesi Sosyal Bilimler Dergisi, 26, 11-41.
  • 3- Chan, H.K., Xu, S. ve Qi, X. (2019). A Comparison of Time Series Methods for Forecasting Container Throughput, International Journal of Logistics Research and Applications, 22(3), 294-303.
  • 4- Chen, S.H. ve Chen, J.N. (2010). Forecasting Container Throughputs at Ports Using Genetic Programming, Expert Systems with Applications, 37(3), 2054–2058.
  • 5- Çuhadar, M., Güngör, İ. ve Göksu A. (2009). Turizm Talebinin Yapay Sinir Ağları ile Tahmini ve Zaman Serisi Yöntemleri ile Karşılaştırmalı Analizi: Antalya İline Yönelik Bir Uygulama, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), 99- 114.
  • 6- Denizcilik Sektör Raporu (2019). İMEAK Deniz Ticaret Odası, İstanbul.
  • 7- Gao, Y., Chang, D., Fang, T. ve Fan, Y. (2019). The Daily Container Volumes Prediction of Storage Yard in Port with Long Short-Term Memory Recurrent Neural Network, Journal of Advanced Transportation, 1, 1-11.
  • 8- Goh, C. ve Law, R. (2002). Modeling And Forecasting Tourism Demand For Arrivals With Stochastic Nonstationary Seasonality And Intervention, Tourism Management, 23(5), 499-510.
  • 9- Gujarati, D. N. (1995). Basic Econometrics. 3. Edition. New York: MC Graw- Hill Higher.
  • 10- Guo, Z., Le, W., Wu, Y. ve Wang, W. (2019). A Multi-Step Approach Framework for Freight Forecasting of River-Sea Direct Transport without Direct Historical Data, Sustainability, 11(15), 1-15.
  • 11- Guzey, H. ve Akansel, M. (2019). A Comparison of SVM and Traditional Methods for Demand Forecasting in A Seaport: A Case Study, International Journal of Scientific and Technological Research, 5(3), 168-176.
  • 12- Halim, S. ve Bisono, I. N. (2008). Automatic Seasonal Auto Regressive Moving Average Models and Unit Root Test Detection, International Journal of Management Science and Engineering Management, 3(4), 266-274.
  • 13- Julong, D. (1989). Introduction to Grey System Theory, The Journal of Grey System, 1, 1- 24.
  • 14- Kara, A. (2011), İzmir (Alsancak) Limanı Gelecek Talep Tahmini İçin Bir Yöntem Önerisi, Yayınlanmamış Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi.
  • 15- Kayacan, E., Ulutaş, B., Büyükşalvarcı ve A., Kaynak, O. (2007). Gri Sistem Kuramı ve Finansman Uygulamaları: İMKB Örneği, 11. Ulusal Finans Sempozyumu, 17-20 Ekim 2007, Zonguldak, 215- 229.
  • 16- LI, Y., Campbell, E.P., Haswell, D., Sneeuwjagt, R.J. ve Venables, W.N. (2003). Statistical Forecasting of Soil Dryness Index in The Southwest of Western Australia, Forest Ecology and Management, 183: 147-157.
  • 17- Lim, D., Anthony, P., Mun, H.C., Wai, N.K. (2008). Assessing the Accuracy of Grey System Theory Against Artificial Neural Network in Predicting Online Auction Closing Price, Proceedings of the International Multi Conference of Engineers and Computer Scientists (IMECS), 1, 1-7.
  • 18- Liu, S. ve Lin, Y. (2006). Grey Information. London: Springer.
  • 19- Liu, S. ve Forrest, J. (2007). The Current Developing Status on Grey System Theory, The Journal of Grey System, 2, 111- 123.
  • 20- Meciarova, Z. (2007). Modeling and Forecasting Seasonal Time Series, Journal of Information, Control and Management Systems, 5(1), 73-80.
  • 21- Özdemir, M. A. ve Bahadır, M. (2010). Denizli’de Box Jenkins Tekniği ile Küresel İklim Değişikliği Öngörüleri, Uluslararası Sosyal Araştırmalar Dergisi, 12(3), 352-362.
  • 22- Özkara, Y., (2009). Mevsimsel Ayrıştırma Temelli Gri Tahmin Yöntemi İle Aylık Elektrik Yük Tahmini, Yayınlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi.
  • 23- Peker, İ. ve Baki, B. (2011). Gri İlişkisel Analiz Yöntemiyle Türk Sigortacılık Sektöründe Performans Ölçümü, International Journal of Economic and Administrative Studies, 4(7), 1- 18.
  • 24- Rashed, Y., Meersman, H., Voorde, E.V. ve Vanelslander, T. (2017). Short-Term Forecast of Container Throughout: An ARIMA-Intervention Model for The Port of Antwerp, Maritime Economics & Logistics, 19(4), 749-764.
  • 25- Schulze, P.M. ve Prinz, A. (2009). Forecasting Container Transshipment in Germany, Applied Economics, 41(22), 2809-2815.
  • 26- Sallehuddin, R., Shamsuddin, S. M., Mohd, S. Z. M. ve Abrahamy A. (2010). Forecasting Time Series Data Using Hybrid Grey Relational Artificial Neural Network And Auto Regressive İntegrated Moving Average Model, Neural Network World, 6 (7), 573-605.
  • 27- Tang, S., Wu, S. ve Gao, J. (2019). An Optimal Model based on Multifactors for Container Throughput Forecasting, Journal of Civil Engineering, 23(9), 4124-4131.
  • 28- Tran, T.T. (2019). Applying Grey System Theory to Forecast The Total Value of Imports and Exports of Top Traded Commodities in Taiwan, International Journal of Analysis and Applications, 17(2), 282-302.
  • 29- Wang, Y. ve Wang, Z. (2018). Combined Throughput Prediction of Fujian Coastal Ports Based on Grey Model and Markov Chain, Advances in Economics, Business and Management Research, 68, 97-104.
  • 30- Yılmaz, H. ve Yılmaz, M. (2013). Gri Tahmin Yöntemi Kullanılarak Türkiye’nin Co2 Emisyon Tahmini, Mühendislik ve Fen Bilimleri Dergisi, 31, 141- 148.
  • 31- Yolsal, H. (2010). Mevsimsel Düzeltmede Kullanılan İstatistiki Yöntemler Üzerine Bir İnceleme, Öneri Dergisi, 9(33), 245-257.
  • 32- Erişim: 06.01.2020, https://clarksonsresearch.wordpress.com/.
  • 33- Erişim: 06.01.2020, https://denizticareti.uab.gov.tr/.

MONTHLY CONTAINER DEMAND FORECAST FOR PORT OF ANTALYA USING GRAY PREDICTION AND BOX-JENKINS METHODS

Year 2020, Volume: 7 Issue: 3, 540 - 562, 30.11.2020
https://doi.org/10.30798/makuiibf.689532

Abstract

The importance of container transportation in maritime trade is increasing day by day. The effective prediction of container volume provides decision support for planning and operations of the ports. Therefore, forecasting are crucially important for the future plans of port management have an important place. In this study, container statistics for January 2008-December 2017 (120 months) period were used in the estimation models for Port Akdeniz Port in Antalya. The freight demand forecast of the port management is made for the period of January 2018-December 2019 (24 months), taking into consideration the seasonal differences on the basis of containers. In the study using Gray Estimation and Box-Jenkins (B-J) methods, container volumes estimations were carried out using Gray Model (1,1) and ARIMA (0,1,0)x(0,1,1)12 models. As estimation results are evaluated with success criteria, it is observed that MAPE and MAE values of Gray Model (1,1) are lower. However, considering both RMSE and MSE and deviation values; it is determined that ARIMA (0,1,0)x(0,1,1)12 model gives better and more suitable estimation values.

References

  • 1- Akar, O. ve Esmer, S. (2015). Cargo Demand Analysis of Container Terminals in Turkey, Journal of ETA Maritime Science, 3(2), 117-122.
  • 2- Bayraktutan, Y. ve Özbilgin, M. (2013). Limanların Uluslararası Ticarete Etkisi ve Kocaeli Limanlarının Ülke Ekonomisindeki Yeri, Kocaeli Üniversitesi Sosyal Bilimler Dergisi, 26, 11-41.
  • 3- Chan, H.K., Xu, S. ve Qi, X. (2019). A Comparison of Time Series Methods for Forecasting Container Throughput, International Journal of Logistics Research and Applications, 22(3), 294-303.
  • 4- Chen, S.H. ve Chen, J.N. (2010). Forecasting Container Throughputs at Ports Using Genetic Programming, Expert Systems with Applications, 37(3), 2054–2058.
  • 5- Çuhadar, M., Güngör, İ. ve Göksu A. (2009). Turizm Talebinin Yapay Sinir Ağları ile Tahmini ve Zaman Serisi Yöntemleri ile Karşılaştırmalı Analizi: Antalya İline Yönelik Bir Uygulama, Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), 99- 114.
  • 6- Denizcilik Sektör Raporu (2019). İMEAK Deniz Ticaret Odası, İstanbul.
  • 7- Gao, Y., Chang, D., Fang, T. ve Fan, Y. (2019). The Daily Container Volumes Prediction of Storage Yard in Port with Long Short-Term Memory Recurrent Neural Network, Journal of Advanced Transportation, 1, 1-11.
  • 8- Goh, C. ve Law, R. (2002). Modeling And Forecasting Tourism Demand For Arrivals With Stochastic Nonstationary Seasonality And Intervention, Tourism Management, 23(5), 499-510.
  • 9- Gujarati, D. N. (1995). Basic Econometrics. 3. Edition. New York: MC Graw- Hill Higher.
  • 10- Guo, Z., Le, W., Wu, Y. ve Wang, W. (2019). A Multi-Step Approach Framework for Freight Forecasting of River-Sea Direct Transport without Direct Historical Data, Sustainability, 11(15), 1-15.
  • 11- Guzey, H. ve Akansel, M. (2019). A Comparison of SVM and Traditional Methods for Demand Forecasting in A Seaport: A Case Study, International Journal of Scientific and Technological Research, 5(3), 168-176.
  • 12- Halim, S. ve Bisono, I. N. (2008). Automatic Seasonal Auto Regressive Moving Average Models and Unit Root Test Detection, International Journal of Management Science and Engineering Management, 3(4), 266-274.
  • 13- Julong, D. (1989). Introduction to Grey System Theory, The Journal of Grey System, 1, 1- 24.
  • 14- Kara, A. (2011), İzmir (Alsancak) Limanı Gelecek Talep Tahmini İçin Bir Yöntem Önerisi, Yayınlanmamış Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi.
  • 15- Kayacan, E., Ulutaş, B., Büyükşalvarcı ve A., Kaynak, O. (2007). Gri Sistem Kuramı ve Finansman Uygulamaları: İMKB Örneği, 11. Ulusal Finans Sempozyumu, 17-20 Ekim 2007, Zonguldak, 215- 229.
  • 16- LI, Y., Campbell, E.P., Haswell, D., Sneeuwjagt, R.J. ve Venables, W.N. (2003). Statistical Forecasting of Soil Dryness Index in The Southwest of Western Australia, Forest Ecology and Management, 183: 147-157.
  • 17- Lim, D., Anthony, P., Mun, H.C., Wai, N.K. (2008). Assessing the Accuracy of Grey System Theory Against Artificial Neural Network in Predicting Online Auction Closing Price, Proceedings of the International Multi Conference of Engineers and Computer Scientists (IMECS), 1, 1-7.
  • 18- Liu, S. ve Lin, Y. (2006). Grey Information. London: Springer.
  • 19- Liu, S. ve Forrest, J. (2007). The Current Developing Status on Grey System Theory, The Journal of Grey System, 2, 111- 123.
  • 20- Meciarova, Z. (2007). Modeling and Forecasting Seasonal Time Series, Journal of Information, Control and Management Systems, 5(1), 73-80.
  • 21- Özdemir, M. A. ve Bahadır, M. (2010). Denizli’de Box Jenkins Tekniği ile Küresel İklim Değişikliği Öngörüleri, Uluslararası Sosyal Araştırmalar Dergisi, 12(3), 352-362.
  • 22- Özkara, Y., (2009). Mevsimsel Ayrıştırma Temelli Gri Tahmin Yöntemi İle Aylık Elektrik Yük Tahmini, Yayınlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi.
  • 23- Peker, İ. ve Baki, B. (2011). Gri İlişkisel Analiz Yöntemiyle Türk Sigortacılık Sektöründe Performans Ölçümü, International Journal of Economic and Administrative Studies, 4(7), 1- 18.
  • 24- Rashed, Y., Meersman, H., Voorde, E.V. ve Vanelslander, T. (2017). Short-Term Forecast of Container Throughout: An ARIMA-Intervention Model for The Port of Antwerp, Maritime Economics & Logistics, 19(4), 749-764.
  • 25- Schulze, P.M. ve Prinz, A. (2009). Forecasting Container Transshipment in Germany, Applied Economics, 41(22), 2809-2815.
  • 26- Sallehuddin, R., Shamsuddin, S. M., Mohd, S. Z. M. ve Abrahamy A. (2010). Forecasting Time Series Data Using Hybrid Grey Relational Artificial Neural Network And Auto Regressive İntegrated Moving Average Model, Neural Network World, 6 (7), 573-605.
  • 27- Tang, S., Wu, S. ve Gao, J. (2019). An Optimal Model based on Multifactors for Container Throughput Forecasting, Journal of Civil Engineering, 23(9), 4124-4131.
  • 28- Tran, T.T. (2019). Applying Grey System Theory to Forecast The Total Value of Imports and Exports of Top Traded Commodities in Taiwan, International Journal of Analysis and Applications, 17(2), 282-302.
  • 29- Wang, Y. ve Wang, Z. (2018). Combined Throughput Prediction of Fujian Coastal Ports Based on Grey Model and Markov Chain, Advances in Economics, Business and Management Research, 68, 97-104.
  • 30- Yılmaz, H. ve Yılmaz, M. (2013). Gri Tahmin Yöntemi Kullanılarak Türkiye’nin Co2 Emisyon Tahmini, Mühendislik ve Fen Bilimleri Dergisi, 31, 141- 148.
  • 31- Yolsal, H. (2010). Mevsimsel Düzeltmede Kullanılan İstatistiki Yöntemler Üzerine Bir İnceleme, Öneri Dergisi, 9(33), 245-257.
  • 32- Erişim: 06.01.2020, https://clarksonsresearch.wordpress.com/.
  • 33- Erişim: 06.01.2020, https://denizticareti.uab.gov.tr/.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Fatma Gul Altin 0000-0001-9236-0502

Şeyma Çelik Eroğlu 0000-0003-4573-7690

Publication Date November 30, 2020
Submission Date February 17, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

APA Altin, F. G., & Çelik Eroğlu, Ş. (2020). GRİ TAHMİN VE BOX-JENKINS YÖNTEMLERİ İLE ANTALYA LİMANI İÇİN AYLIK KONTEYNER TALEP TAHMİNİ. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 7(3), 540-562. https://doi.org/10.30798/makuiibf.689532

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.