Research Article
BibTex RIS Cite

National Unemployment Rate Forecast with Google Trends

Year 2025, Volume: 12 Issue: 1, 107 - 123, 31.03.2025
https://doi.org/10.30798/makuiibf.1446639

Abstract

The significant economic recession and ongoing COVID-19 pandemic are impacting various sectors. The decrease in employment, one of the main consequences of this economic stagnation, is felt intensely in Türkiye. The concern that today's unemployment problem will be experienced more intensely in the future brings to the fore studies on unemployment forecasting. To date, unemployment forecasting studies have received extensive coverage in the literature. This study aims to make more successful forecasts of unemployment data by using Google Trends (GT), which is frequently used in different fields today. Four GT-based variables were incorporated into traditional forecasting methods, including ARIMA, ARIMAX, and VAR models. The VAR GT3 model, which integrates GT data with annual inflation, provided the best forecasting performance among all tested models. The findings indicate that models incorporating GT data derived from various keywords yield more successful results than traditional models.

Ethical Statement

Ethics Committee approval was not required for this study. The authors declare that the study was conducted in accordance with research and publication ethics. The authors confirm that no part of the study was generated, either wholly or in part, using Artificial Intelligence (AI) tools. The authors declare that there are no financial conflicts of interest involving any institution, organization, or individual associated with this article. Additionally, there are no conflicts of interest among the authors. The authors affirm that they contributed equally to all aspects of the research.

References

  • Abraham, J., Higdon, D., Nelson, J., & Ibarra, J. (2018). Cryptocurrency price prediction using tweet volumes and sentiment analysis. SMU Data Science Review, 1(3), 1.
  • Adu, W. K., Appiahene, P., & Afrifa, S. (2023). VAR, ARIMAX and ARIMA models for nowcasting unemployment rate in Ghana using Google Trends. Journal of Electrical Systems and Information Technology, 10(1), 1-16. https://doi.org/10.1186/s43067-023-00078-1
  • Ağaslan, E., & Gayaker, S. (2020). Türkiye ekonomisindeki emisyon hacminin düşük ve yüksek frekanslı modeller ile öngörüsü. Bankacılık Dergisi, 31(114), 30-49.
  • Ahlburg, A. D. (1992). Predicting the job performance of managers: What do the experts know? International Journal of Forecasting, 7(4), 467-472.
  • Anvik, C., & Gjelstad, K. (2010). " Just Google it": Forecasting Norwegian unemployment figures with web queries, Cream, 11, 1–52.
  • Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, 55(2), 107-120. https://doi.org/10.3790/aeq.55.2.107
  • Atgür, M. (2020). Inflation and unemployment relationship in Turkey: An examination on the validity of Phillips Curve (1988-2017). International Journal of Eurasia Social Sciences, 11(40), 572-605. https://doi.org/10.35826/ijoess.2617
  • Ayyoubzadeh, S. M., Ayyoubzadeh, S. M., Zahedi, H., Ahmadi, M., & Kalhori, S. R. N. (2020). Predicting COVID-19 incidence through analysis of Google Trends data in Iran: Data mining and deep learning pilot study. JMIR Public Health and Surveillance, 6(2), e18828.
  • Balli, F., & Elsamadisy, E. (2012). Modelling the currency in circulation for the State of Qatar. International Journal of Islamic and Middle Eastern Finance and Management, 5(4), 321-339.
  • Belej, M. (2022). Does Google Trends show the strength of social interest as a predictor of housing price dynamics? Sustainability, 14(9), 5601. https://doi.org/10.3390/su14095601
  • Blazquez, D., & Domenech, J. (2018). Big data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130, 99-113. https://doi.org/10.1016/j.techfore.2017.07.027
  • Bolivar, F., Ortiz, A., & Rodrigo, T. (2019). Nowcasting Turkish unemployment using real-time data from Google. BBVA Research.
  • Cebrián, E., & Domenech, J. (2023). Is Google Trends a quality data source? Applied Economics Letters, 30(6), 811-815. https://doi.org/10.1080/13504851.2021.2023088
  • Chadwick, M. G., & Şengül, G. (2015). Nowcasting the unemployment rate in Turkey: Let's ask Google. Central Bank Review, 15(3), 15.
  • Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(1), 2-9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  • D'Amuri, F. (2009). Predicting unemployment in short samples with Internet job search query data. MPRA Paper 18403, University Library of Munich, Germany.
  • D'Amuri, F., & Marcucci, J. (2010). 'Google it!' Forecasting the US unemployment rate with a Google job search index. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1594132
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072. https://doi.org/10.2307/1912517
  • Einav, L., & Levin, J. (2014). Economics in the age of big data. Science, 346(6210). https://doi.org/10.1126/science.1243089
  • Ettredge, M., Gerdes, J., & Karuga, G. (2005). Using web-based search data to predict macroeconomic statistics. Communications of the ACM, 48(11), 87-92. https://doi.org/10.1145/1096000.1096010
  • Fildes, R. (1992). Forecasting structural time series models and the Kalman filter. International Journal of Forecasting, 8(4), 635. https://doi.org/10.1016/0169-2070(92)90072-h
  • Fondeur, Y., & Karame, F. (2013). Can Google data help predict French youth unemployment? Economic Modelling, 30, 117-125. https://doi.org/10.1016/j.econmod.2012.07.017
  • Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1-28.
  • Gonzalez-Fernandez, M., & Gonzalez-Velasco, C. (2018). Can Google econometrics predict unemployment? Evidence from Spain. Economics Letters, 170, 42-45.
  • Han, S. C., Chung, H., & Kang, B. H. (2012). It is time to prepare for the future: Forecasting social trends. Communications in Computer and Information Science, 325-331. https://doi.org/10.1007/978-3-642-35603-2_48
  • Hassani, H., & Silva, E. S. (2015). Forecasting with big data: A review. Annals of Data Science, 2(1), 5-19. https://doi.org/10.1007/s40745-015-0029-9
  • Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice, 3rd edition, OTexts. https://otexts.com/fpp2/simple-exponential-smoothing.html
  • Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688.
  • Jun, S. P., & Park, D. H. (2016). Consumer information search behavior and purchasing decisions: Empirical evidence from Korea. Technological Forecasting and Social Change, 107, 97-111. https://doi.org/10.1016/j.techfore.2016.03.021
  • Karahan, P., & Uslu, N. Ç. (2018). A dynamic analysis on the validity of the Phillips curve for Turkey. Finans Politik ve Ekonomik Yorumlar, 55(636), 89-99.
  • Kırca, M., & Canbay, Ş. (2020). Kırılgan beşli ülkeler için Phillips eğrisi analizi. İktisadi İdari ve Siyasal Araştırmalar Dergisi, 5(12), 130-140. https://doi.org/10.25204/iktisad.717391
  • Knipe, D., Gunnell, D., Evans, H., John, A., & Fancourt, D. (2021). Is Google Trends a useful tool for tracking mental and social distress during a public health emergency? A time-series analysis. Journal of Affective Disorders, 294, 737-744. https://doi.org/10.1016/j.jad.2021.06.086
  • Lee, E. (2015). Recognizing rights in real time: The role of Google in the EU right to be forgotten. UCDL Rev., 49, 1017.
  • McLaren, N., & Shanbhogue, R. (2011). Using Internet search data as economic indicators. Bank of England Quarterly Bulletin, No. 2011, Q2. http://dx.doi.org/10.2139/ssrn.1865276
  • Mihaela, S. (2020). Improving unemployment rate forecasts at regional level in Romania using Google Trends. Technological Forecasting and Social Change, 155, 120026. https://doi.org/10.1016/j.techfore.2020.120026
  • Moosa, I., & Burns, K. (2014). The unbeatable random walk in exchange rate forecasting: Reality or myth? Journal of Macroeconomics, 40, 69-81.
  • Mulero, R., & Garcia-Hiernaux, A. (2023). Forecasting unemployment with Google Trends: age, gender, and digital divide. Empirical Economics, 65(2), 587-605. https://doi.org/10.1007/s00181-022-02347-w
  • Naccarato, A., Falorsi, S., Loriga, S., & Pierini, A. (2018). Combining official and Google Trends data to forecast the Italian youth unemployment rate. Technological Forecasting and Social Change, 130, 114-122. https://doi.org/10.1016/j.techfore.2017.11.022
  • Nar, M. (2021). Analysis of the Phillips Curve: An assessment of Turkey. The Journal of Asian Finance. Economics, and Business, 8(2), 65-75.
  • Park, S., Lee, J., & Song, W. (2017). Short-term forecasting of Japanese tourist inflow to South Korea using Google Trends data. Journal of Travel & Tourism Marketing, 34(3), 357-368.
  • Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 57(6), 1361-1401. https://doi.org/10.2307/1913712
  • Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of Econometrics, 80(2), 355-385. https://doi.org/10.1016/s0304-4076(97)00049-3
  • Pesaran, M. H., Schuermann, T., & Smith, L. V. (2009). Forecasting economic and financial variables with global VARs. International Journal of Forecasting, 25(4), 642-675. https://doi.org/10.1016/j.ijforecast.2009.08.007
  • Rotter, D., Doebler, P., & Schmitz, F. (2021). Interests, motives, and psychological burdens in times of crisis and lockdown: Google Trends analysis to inform policymakers. Journal of Medical Internet Research, 23(6), e26385. https://doi.org/10.2196/26385
  • Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLOS Computational Biology, 11(10), e1004513. https://doi.org/10.1371/journal.pcbi.1004513
  • Şentürk, G. (2022). Can Google search data improve the unemployment rate forecasting model? An empirical analysis for Turkey. Journal of Economic Policy Researches, 9(2), 229-244.
  • Sherman-Morris, K., Senkbeil, J., & Carver, R. (2011). Who's Googling what? What internet searches reveal about hurricane information seeking. Bulletin of the American Meteorological Society, 92(8), 975-985. https://doi.org/10.1175/2011bams3053.1
  • Simionescu, M. (2020). Improving unemployment rate forecasts at regional level in Romania using Google Trends. Technological Forecasting and Social Change, 155, 120026.
  • Simionescu, M., & Cifuentes-Faura, J. (2022a). Forecasting national and regional youth unemployment in Spain using Google Trends. Social Indicators Research, 164(3), 1187-1216. https://doi.org/10.1007/s11205-022-02984-9
  • Simionescu, M., & Cifuentes-Faura, J. (2022b). Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal. Journal of Policy Modeling, 44(1), 1-21. https://doi.org/10.1016/j.jpolmod.2021.09.011
  • Simionescu, M., & Zimmermann, K. F. (2017). Big data and unemployment analysis. GLO Discussion Paper, No. 81. Global Labor Organization (GLO), Maastricht.
  • Suhoy, T. (2009). Query indices and a 2008 downturn: Israeli data, (No. 2009.06). Bank of Israel Working Papers 2009.06, Bank of Israel.
  • Vicente, M. R., López-Menéndez, A. J., & Pérez, R. (2015). Forecasting unemployment with Internet search data: Does it help to improve predictions when job destruction is skyrocketing? Technological Forecasting and Social Change, 92, 132-139. https://doi.org/10.1016/j.techfore.2014.12.005
  • Vogelsang, T. J., & Perron, P. (1998). Additional tests for a unit root allowing for a break in the trend function at an unknown time. International Economic Review, 39(4), 1073-1100. https://doi.org/10.2307/2527353
  • Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: Survey-based indicators vs. Google Trends. Journal of Forecasting, 30(6), 565-578. https://doi.org/10.1002/for.1213
  • Wilcoxson, J., Follett, L., & Severe, S. (2020). Forecasting foreign exchange markets using Google Trends: Prediction performance of competing models. Journal of Behavioral Finance, 21(4), 412-422.
  • Wu, L., & Brynjolfsson, E. (2015). The future of prediction: How Google searches foreshadow housing prices and sales. In A. Goldfarb, S. M. Greenstein & C.E. Tucker (Eds.), Economic Analysis of the Digital Economy (pp. 89-118). University of Chicago Press.
  • Yeh, C. H., Wang, Y. S., Lin, S. J., Tseng, T. H., Lin, H. H., Shih, Y. W., & Lai, Y. H. (2018). What drives internet users’ willingness to provide personal information? Online Information Review, 42(6), 923–939. https://doi.org/10.1108/OIR-09-2016-0264
  • Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251-270. https://doi.org/10.1080/07350015.1992.10509904

National Unemployment Rate Forecast with Google Trends

Year 2025, Volume: 12 Issue: 1, 107 - 123, 31.03.2025
https://doi.org/10.30798/makuiibf.1446639

Abstract

The significant economic recession and ongoing COVID-19 pandemic are impacting various sectors. The decrease in employment, one of the main consequences of this economic stagnation, is felt intensely in Türkiye. The concern that today's unemployment problem will be experienced more intensely in the future brings to the fore studies on unemployment forecasting. To date, unemployment forecasting studies have received extensive coverage in the literature. This study aims to make more successful forecasts of unemployment data by using Google Trends (GT), which is frequently used in different fields today. Four GT-based variables were incorporated into traditional forecasting methods, including ARIMA, ARIMAX, and VAR models. The VAR GT3 model, which integrates GT data with annual inflation, provided the best forecasting performance among all tested models. The findings indicate that models incorporating GT data derived from various keywords yield more successful results than traditional models.

Ethical Statement

Ethics Committee approval was not required for this study. The authors declare that the study was conducted in accordance with research and publication ethics. The authors confirm that no part of the study was generated, either wholly or in part, using Artificial Intelligence (AI) tools. The authors declare that there are no financial conflicts of interest involving any institution, organization, or individual associated with this article. Additionally, there are no conflicts of interest among the authors. The authors affirm that they contributed equally to all aspects of the research.

References

  • Abraham, J., Higdon, D., Nelson, J., & Ibarra, J. (2018). Cryptocurrency price prediction using tweet volumes and sentiment analysis. SMU Data Science Review, 1(3), 1.
  • Adu, W. K., Appiahene, P., & Afrifa, S. (2023). VAR, ARIMAX and ARIMA models for nowcasting unemployment rate in Ghana using Google Trends. Journal of Electrical Systems and Information Technology, 10(1), 1-16. https://doi.org/10.1186/s43067-023-00078-1
  • Ağaslan, E., & Gayaker, S. (2020). Türkiye ekonomisindeki emisyon hacminin düşük ve yüksek frekanslı modeller ile öngörüsü. Bankacılık Dergisi, 31(114), 30-49.
  • Ahlburg, A. D. (1992). Predicting the job performance of managers: What do the experts know? International Journal of Forecasting, 7(4), 467-472.
  • Anvik, C., & Gjelstad, K. (2010). " Just Google it": Forecasting Norwegian unemployment figures with web queries, Cream, 11, 1–52.
  • Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, 55(2), 107-120. https://doi.org/10.3790/aeq.55.2.107
  • Atgür, M. (2020). Inflation and unemployment relationship in Turkey: An examination on the validity of Phillips Curve (1988-2017). International Journal of Eurasia Social Sciences, 11(40), 572-605. https://doi.org/10.35826/ijoess.2617
  • Ayyoubzadeh, S. M., Ayyoubzadeh, S. M., Zahedi, H., Ahmadi, M., & Kalhori, S. R. N. (2020). Predicting COVID-19 incidence through analysis of Google Trends data in Iran: Data mining and deep learning pilot study. JMIR Public Health and Surveillance, 6(2), e18828.
  • Balli, F., & Elsamadisy, E. (2012). Modelling the currency in circulation for the State of Qatar. International Journal of Islamic and Middle Eastern Finance and Management, 5(4), 321-339.
  • Belej, M. (2022). Does Google Trends show the strength of social interest as a predictor of housing price dynamics? Sustainability, 14(9), 5601. https://doi.org/10.3390/su14095601
  • Blazquez, D., & Domenech, J. (2018). Big data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130, 99-113. https://doi.org/10.1016/j.techfore.2017.07.027
  • Bolivar, F., Ortiz, A., & Rodrigo, T. (2019). Nowcasting Turkish unemployment using real-time data from Google. BBVA Research.
  • Cebrián, E., & Domenech, J. (2023). Is Google Trends a quality data source? Applied Economics Letters, 30(6), 811-815. https://doi.org/10.1080/13504851.2021.2023088
  • Chadwick, M. G., & Şengül, G. (2015). Nowcasting the unemployment rate in Turkey: Let's ask Google. Central Bank Review, 15(3), 15.
  • Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(1), 2-9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  • D'Amuri, F. (2009). Predicting unemployment in short samples with Internet job search query data. MPRA Paper 18403, University Library of Munich, Germany.
  • D'Amuri, F., & Marcucci, J. (2010). 'Google it!' Forecasting the US unemployment rate with a Google job search index. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1594132
  • Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072. https://doi.org/10.2307/1912517
  • Einav, L., & Levin, J. (2014). Economics in the age of big data. Science, 346(6210). https://doi.org/10.1126/science.1243089
  • Ettredge, M., Gerdes, J., & Karuga, G. (2005). Using web-based search data to predict macroeconomic statistics. Communications of the ACM, 48(11), 87-92. https://doi.org/10.1145/1096000.1096010
  • Fildes, R. (1992). Forecasting structural time series models and the Kalman filter. International Journal of Forecasting, 8(4), 635. https://doi.org/10.1016/0169-2070(92)90072-h
  • Fondeur, Y., & Karame, F. (2013). Can Google data help predict French youth unemployment? Economic Modelling, 30, 117-125. https://doi.org/10.1016/j.econmod.2012.07.017
  • Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1-28.
  • Gonzalez-Fernandez, M., & Gonzalez-Velasco, C. (2018). Can Google econometrics predict unemployment? Evidence from Spain. Economics Letters, 170, 42-45.
  • Han, S. C., Chung, H., & Kang, B. H. (2012). It is time to prepare for the future: Forecasting social trends. Communications in Computer and Information Science, 325-331. https://doi.org/10.1007/978-3-642-35603-2_48
  • Hassani, H., & Silva, E. S. (2015). Forecasting with big data: A review. Annals of Data Science, 2(1), 5-19. https://doi.org/10.1007/s40745-015-0029-9
  • Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice, 3rd edition, OTexts. https://otexts.com/fpp2/simple-exponential-smoothing.html
  • Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688.
  • Jun, S. P., & Park, D. H. (2016). Consumer information search behavior and purchasing decisions: Empirical evidence from Korea. Technological Forecasting and Social Change, 107, 97-111. https://doi.org/10.1016/j.techfore.2016.03.021
  • Karahan, P., & Uslu, N. Ç. (2018). A dynamic analysis on the validity of the Phillips curve for Turkey. Finans Politik ve Ekonomik Yorumlar, 55(636), 89-99.
  • Kırca, M., & Canbay, Ş. (2020). Kırılgan beşli ülkeler için Phillips eğrisi analizi. İktisadi İdari ve Siyasal Araştırmalar Dergisi, 5(12), 130-140. https://doi.org/10.25204/iktisad.717391
  • Knipe, D., Gunnell, D., Evans, H., John, A., & Fancourt, D. (2021). Is Google Trends a useful tool for tracking mental and social distress during a public health emergency? A time-series analysis. Journal of Affective Disorders, 294, 737-744. https://doi.org/10.1016/j.jad.2021.06.086
  • Lee, E. (2015). Recognizing rights in real time: The role of Google in the EU right to be forgotten. UCDL Rev., 49, 1017.
  • McLaren, N., & Shanbhogue, R. (2011). Using Internet search data as economic indicators. Bank of England Quarterly Bulletin, No. 2011, Q2. http://dx.doi.org/10.2139/ssrn.1865276
  • Mihaela, S. (2020). Improving unemployment rate forecasts at regional level in Romania using Google Trends. Technological Forecasting and Social Change, 155, 120026. https://doi.org/10.1016/j.techfore.2020.120026
  • Moosa, I., & Burns, K. (2014). The unbeatable random walk in exchange rate forecasting: Reality or myth? Journal of Macroeconomics, 40, 69-81.
  • Mulero, R., & Garcia-Hiernaux, A. (2023). Forecasting unemployment with Google Trends: age, gender, and digital divide. Empirical Economics, 65(2), 587-605. https://doi.org/10.1007/s00181-022-02347-w
  • Naccarato, A., Falorsi, S., Loriga, S., & Pierini, A. (2018). Combining official and Google Trends data to forecast the Italian youth unemployment rate. Technological Forecasting and Social Change, 130, 114-122. https://doi.org/10.1016/j.techfore.2017.11.022
  • Nar, M. (2021). Analysis of the Phillips Curve: An assessment of Turkey. The Journal of Asian Finance. Economics, and Business, 8(2), 65-75.
  • Park, S., Lee, J., & Song, W. (2017). Short-term forecasting of Japanese tourist inflow to South Korea using Google Trends data. Journal of Travel & Tourism Marketing, 34(3), 357-368.
  • Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 57(6), 1361-1401. https://doi.org/10.2307/1913712
  • Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of Econometrics, 80(2), 355-385. https://doi.org/10.1016/s0304-4076(97)00049-3
  • Pesaran, M. H., Schuermann, T., & Smith, L. V. (2009). Forecasting economic and financial variables with global VARs. International Journal of Forecasting, 25(4), 642-675. https://doi.org/10.1016/j.ijforecast.2009.08.007
  • Rotter, D., Doebler, P., & Schmitz, F. (2021). Interests, motives, and psychological burdens in times of crisis and lockdown: Google Trends analysis to inform policymakers. Journal of Medical Internet Research, 23(6), e26385. https://doi.org/10.2196/26385
  • Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLOS Computational Biology, 11(10), e1004513. https://doi.org/10.1371/journal.pcbi.1004513
  • Şentürk, G. (2022). Can Google search data improve the unemployment rate forecasting model? An empirical analysis for Turkey. Journal of Economic Policy Researches, 9(2), 229-244.
  • Sherman-Morris, K., Senkbeil, J., & Carver, R. (2011). Who's Googling what? What internet searches reveal about hurricane information seeking. Bulletin of the American Meteorological Society, 92(8), 975-985. https://doi.org/10.1175/2011bams3053.1
  • Simionescu, M. (2020). Improving unemployment rate forecasts at regional level in Romania using Google Trends. Technological Forecasting and Social Change, 155, 120026.
  • Simionescu, M., & Cifuentes-Faura, J. (2022a). Forecasting national and regional youth unemployment in Spain using Google Trends. Social Indicators Research, 164(3), 1187-1216. https://doi.org/10.1007/s11205-022-02984-9
  • Simionescu, M., & Cifuentes-Faura, J. (2022b). Can unemployment forecasts based on Google Trends help government design better policies? An investigation based on Spain and Portugal. Journal of Policy Modeling, 44(1), 1-21. https://doi.org/10.1016/j.jpolmod.2021.09.011
  • Simionescu, M., & Zimmermann, K. F. (2017). Big data and unemployment analysis. GLO Discussion Paper, No. 81. Global Labor Organization (GLO), Maastricht.
  • Suhoy, T. (2009). Query indices and a 2008 downturn: Israeli data, (No. 2009.06). Bank of Israel Working Papers 2009.06, Bank of Israel.
  • Vicente, M. R., López-Menéndez, A. J., & Pérez, R. (2015). Forecasting unemployment with Internet search data: Does it help to improve predictions when job destruction is skyrocketing? Technological Forecasting and Social Change, 92, 132-139. https://doi.org/10.1016/j.techfore.2014.12.005
  • Vogelsang, T. J., & Perron, P. (1998). Additional tests for a unit root allowing for a break in the trend function at an unknown time. International Economic Review, 39(4), 1073-1100. https://doi.org/10.2307/2527353
  • Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: Survey-based indicators vs. Google Trends. Journal of Forecasting, 30(6), 565-578. https://doi.org/10.1002/for.1213
  • Wilcoxson, J., Follett, L., & Severe, S. (2020). Forecasting foreign exchange markets using Google Trends: Prediction performance of competing models. Journal of Behavioral Finance, 21(4), 412-422.
  • Wu, L., & Brynjolfsson, E. (2015). The future of prediction: How Google searches foreshadow housing prices and sales. In A. Goldfarb, S. M. Greenstein & C.E. Tucker (Eds.), Economic Analysis of the Digital Economy (pp. 89-118). University of Chicago Press.
  • Yeh, C. H., Wang, Y. S., Lin, S. J., Tseng, T. H., Lin, H. H., Shih, Y. W., & Lai, Y. H. (2018). What drives internet users’ willingness to provide personal information? Online Information Review, 42(6), 923–939. https://doi.org/10.1108/OIR-09-2016-0264
  • Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251-270. https://doi.org/10.1080/07350015.1992.10509904
There are 59 citations in total.

Details

Primary Language English
Subjects Economic Models and Forecasting
Journal Section Research Articles
Authors

Savaş Gayaker 0000-0002-7186-1532

Hasan Türe 0000-0002-1975-9063

Early Pub Date March 28, 2025
Publication Date March 31, 2025
Submission Date March 3, 2024
Acceptance Date March 25, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Gayaker, S., & Türe, H. (2025). National Unemployment Rate Forecast with Google Trends. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 12(1), 107-123. https://doi.org/10.30798/makuiibf.1446639

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.