Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 971 - 996, 30.09.2025

Abstract

References

  • Akbostancı, E., Tunç, G.İ. &Türüt-Aşık, S. (2011). CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Applied Energy, 88(6), 2273-2278. https://doi.org/10.1016/j.apenergy.2010.12.076
  • Akbostancı, E., Tunç, G.İ. &Türüt-Aşık, S. (2018). Drivers of fuel based carbon dioxide emissions: The case of Turkey. Renewable and Sustainable Energy Reviews, 81(2), 2599-2608. https://doi.org/10.1016/j.rser.2017.06.066
  • Ali, Y. (2015). Measuring CO2 emission linkages with the hypothetical extraction method (HEM). Ecological Indicators, 54, 171-183. https://doi.org/10.1016/j.ecolind.2015.02.021
  • Deng, G., Ma, Y., Zhang, L. & Liu, G. (2018). China’s embodied energy trade: Based on hypothetical extraction method and structural decomposition analysis. Energy Sources, Part B: Economics, Planning, and Policy. 13(11-12), 448-462. https://doi.org/10.1080/15567249.2019.1572836
  • Guerro, A. I. & Sancho, F. (2010). Measuring energy linkages with the hypothetical extraction method: An application to Spain. Energy Economics, 32(4). 831-837. https://doi.org/10.1016/j.eneco.2009.10.017
  • Hartono, D., Dachlan, A. N., Hastuti, S. H., Kartiasih, F., Saputri, N. K., Kurniawan, R., Surahman, U., Goembira, F. & Shirakawa, H. (2023). The impact of households on carbon dioxide emissions in Indonesia. Environmental Processes, 10(54), 1-20. https://doi.org/10.1007/s40710-023-00666-3
  • He, F., Yang, Y., Liu, X., Wang, D., Ji, J. & Yi, Z. (2021). Input-output analysis of China’s CO2 emissions in 2017 based on data of 149 sectors. Sustainability, 13(8), 1-27. https://doi.org/10.3390/su13084172
  • He, H., Gao, Y. & Wang, X. (2024). Applying the hypothetical eextraction method to investigate intersectoral carbon emission linkages of China’s transportation sector. Sustainability, 16(10), 1-15. https://doi.org/10.3390/su16104046
  • Heimler, A. (1991). Linkages and vertical integration in the Chinese economy. Review of Economics and Statistics, 52, 261-267.
  • Hirschman, A. O. (1958). The strategy of economic development, Yale University Press.
  • Jiang, T., Li, S., Yu, Y. & Peng, Y. (2022). Energy-related carbon emissions and structural emissions reduction of China’s construction industry: The perspective of input-output analysis. Environmental Science and Pollution Research, 29(26), 39515-39527. https://doi.org/10.1007/s11356-021-17604-1
  • Kaya, T. (2017). Unraveling the energy use network of construction sector in Turkey using structural path analysis. International Journal of Energy Economics and Policy, 7(1), 31-43.
  • Kumbaroğlu, G. (2011). A sectoral decomposition analysis of Turkish CO2 emissions over 1990-2007. Energy, 36(5), 2419-2433. https://doi.org/10.1016/j.energy.2011.01.027
  • Li, Z., & Song, Y. (2022). Energy consumption linkages of the Chinese construction sector. Energies, 15(5), 1-13. https://doi.org/10.3390/en15051761
  • Li, Z., Lin, Y. Y., Song, Y. & Li, Z. (2023). Linkages and flow paths of energy consumption: Evidence from China’s sectors. Energy Reports, 9, 4594-4603. https://doi.org/10.1016/j.egyr.2023.03.099
  • Liang, J., Wang, s., Liao, Y. & Feng, K. (2024). Carbon emissions embodied in investment: Assesing emission reduction responsibility through multi-regional input-output analysis. Applied Energy, 358, 1-13. https://doi.org/10.1016/j.apenergy.2023.122558
  • Liu, X., Vu, D., Perera, S. C., Wang, G. & Xiong, R. (2023). Nexus between water-energy-carbon footprint network: Multiregional input-output and coupling coordination degree analysis. Journal of Cleaner Production, 430, 1-13. https://doi.org/10.1016/j.jclepro.2023.139639
  • Luo, B., Huang, G., Chen, L., Liu, L. & Zhao, K. (2024). Factorial optimization-driven input-output analysis for socio-economic and environmental effects of GHG emission reduction in electric power systems-a Canadian case study. Renewable and Sustainable Energy Reviews, 192, 1-12. https://doi.org/10.1016/j.rser.2023.114227
  • Ma, Y., Song, Z., Li, S. & Jiang, T. (2020). Dynamic evaluation analysis of the factors driving the growth of energy-related CO2 emissions in China: An input-output analysis. PLOS ONE, 15(12), 1-19. https://doi.org/10.1371/journal.pone.0243557
  • Mangır, N. &Şahin, Ü.A. (2022). An environmentally extended global multi-regional input-output analysis of consumption-based and embodied import-based carbon emissions of Turkey. Environmental Science and Pollution Research, 29(36), 54813-54826. https://doi.org/10.1007/s11356-022-19290-z
  • Meller, P. &Marfán, M. (1981). Small and large industry: employment generation, linkages, and key sectors. Economic Development and Cultural Change, 29, 263-274.
  • Milana, C. (1885). Direct and indirect requirements for gross output in input-output systems. Metroeconomica, 37, 283-292.
  • Miller, R. E. & Blair, P. D. (2009). Input-Output Analysis: Foundations and Extentions (2nd ed.). Cambridge Universty Press.
  • Miller, R. E. & Blair, P. D. (2022). Input-output analysis: Foundations and extentions (3rd ed.). Cambridge Universty Press. https://doi.org/10.1017/9781108676212
  • Miller, R. E. & Lahr, M. L. (2001). A taxonomy of extractions. In M. L. Lahr (Ed.) Regional Science Perspectives in Economic Analysis (407-441). Elsevier.
  • Moon, J., Yun, E. & Lee, J. (2020). Identifying the sustainable industry by input-output analysis combined with CO2 emissions: A time series study from 2005-2015 in South Korea. Sustainability, 12(15), 1-4. https://doi.org/10.3390//su12156043
  • Ogungbile, A. J., Shen, G. Q., Xue, J. & Alabi, T. M. (2021). A hypothetical extraction method decomposition of intersectoral and interprovincial CO2 emission linkages of China’s construction sector. Sustainability, 13(24), 1-31. https://doi.org/10.3390/su132413917
  • Önder H. G. (2021). Renewable energy consumption policy in Turkey: An energy extended input-output analysis. Renewable Energy, 175, 783-796. https://doi.org/10.1016/j.renene.2021.05.025
  • Paelink, J., de Caevel, J. &Degueldre, J. (1965). Analyse quantitative de certainesphénomènes du dévelopment regional polarize: Essai de simulation statiqued’itéraires de propogation. In Problémes de Conversion Économique: Analyses Théoretiques et Études Appliquées (341-387). M.-Th. Génin.
  • Rasmussen, P. N. (1957). Studies in inter-sectoral relations, North-Holland.
  • Sajid, M. J. (2020). Inter-sectoral carbon ties and final demand in a high climate risk country: The case of Pakistan. Journal of Cleaner Production, 269, 1-15. https://doi.org/10.1016/j.jclepro.2020.122254
  • Sajid, M. J., Cao, Q., Cao, M. & Li, S. (2020). Sectoral carbon linkages of Indian economy based on hypothetical extraction model. International Journal of Climate Change Strategies and Management, 12(3), 323-347. https://doi.org/10.1108/IJCCSM-11-2018-0075
  • Sajid, M.J., Li, X. & Cao, Q. (2019). Demand and supply-side carbon linkages of Turkish economy using hypothetical extraction method. Journal of Cleaner Production, 228, 264-275. https://doi.org/10.1016/j.jclepro.2019.04.234
  • Schultz, S. (1976). Intersectoral comparisons as an approach to the identification of key sectors. In K. R. Polenske& J. V. Skolka (Eds.) Advances in Input-Output Analysis (137-159). Ballinger Publishing Company.
  • Schultz, S. (1977). Approaches to identifying key sectors empirically by means of input-output analysis. Journal of Development Studies, 14, 77-96.
  • Shao, M,, Dong, X. & Huang, H. (2024). Measurement of carbon emissions and responsibility sharing for the industrial sector in Zhejiang, China. Heliyon, 10(5), 1-10. https://doi.org/10.1016/j.heliyon.2024.e26505
  • Strassert, G. (1968). Zurbestimmungstrategischersektorenmithilfe von input-output modelen. JarbücherfürNationalökonomie und Statistik, 182(3), 211-215.
  • Sun, Y., Meng, F., Wang, D., Wang, Y., Liu, G. & Liu, L. (2024). Tracking the consumption-based CO2 emissions of typical Chinese megacities in multiscale economies. Journal of Cleaner Production, 450, 1-10. https://doi.org/10.1016/j.jclepro.2024.141758
  • Tsirimokos, C. (2022). Estimating energy interindustry linkages based on the hypothetical extraction method (HEM) in China and USA. International Journal of Environmental Studies, 79(4), 662-685. https://doi.org/10.1080/00207233.2021.1941670
  • Tsirimokos, C. (2023). Applying the hypothetical extraction method to investigate the interindustry greenhouse gas emissions linkages in the Greek economy. Journal of Environmental Economics and Policy, 13(1), 93-109. https://doi.org/10.1080/21606544.2023.2221206
  • Tunç, G.İ., Türüt-Aşık, S. &Akbostancı E. (2009). A decomposition analysis of CO2 emissions from energy use. Energy Policy, 37(11), 4689-4699. https://doi.org/10.1016/j.enpol.2009.06.019
  • Tunç, G.İ., Türüt-Aşık, S. &Akbostancı, E. (2007). CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy. Energy Policy, 35(2), 855-868. https://doi.org/10.1016/j.enpol.2006.02.012
  • Ueda, T. (2022). Structural decomposition analysis of Japan’s energy transitions and related CO2 emissions in 2005-2015 using a hybrit input-output table. Environmental and Resource Economics, 81(4), 763-786. https://doi.org/10.1007/s10640-022-00650-9
  • Wang, Q. & Liu, Y. (2021). Indıa’s renewable energy: New insights from multi-regional input-output and structural decomposition analysis. Journal of Cleaner Production, 283, 1-18. https://doi.org/10.1016/j.jclepro.2020.124230
  • Wang, S., Yu, Y., Jiang, T., &Nie, J. (2022). Analysis on carbon emissions efficiency differences and optimization evaluation of China’s industrial system: An input-output analysis. PLOS ONE, 17(3), 1-19. https://doi.org/10.1371/journal.pone.0258147
  • Wang, Y., Wang, W., Mao, G., Cai, H., Zuo, J., Wang, L. & Zhao, P. (2013). Industrial CO2 emissions in China based on the hypothetical extraction method: Linkage analysis. Energy Policy, 62, 1238-1244. https://doi.org/10.1016/j.enpol.2013.06.045
  • Xu, C., Zhu, Q., Li, X., Wu, L. & Deng, P. (2024). Determinants of global carbon emission and aggregate carbon intensity: A multi-region input-output approach. Economic Analysis and Policy,81, 418-435. https://doi.org/10.1016/j.eap.2023.12.002
  • Yan, J., Dong, H. & Jiang, T. (2022). Structural emission reduction in China’s industrial systems and energy systems: An input-output analysis. Environmental Science and Pollution Research, 29(4), 6010-6025. https://doi.org/10.1007/s11356-021-15447-4
  • Yu, Y., Li, S., Sun, H. &Taghizadeh-Hesary, F. (2021). Energy carbon emission reduction of China’s transportation sector. Economic Analysis and Policy, 69, 378-393. https://doi.org/10.1016/j.eap.2020.12.014
  • Zhang, Y. J., Bian, X. J. & Tan, W. (2018). The linkages of sectoral carbon dioxide emission caused by household consumption in China: Evidence from hypothetical extraction method. Empirical Economics, 54(4), 1743-1775. https://doi.org/10.1007/s00181-017-1272-z
  • Zhao, Y., Zhang, Z., Wang, S., Zhang, Y. & Liu, Y. (2015). Linkage analysis of sectoral CO2 emissions based on hypothetical extraction method in South Africa. Journal of Cleaner Production, 103(15), 916-924. https://doi.org/10.1016/j.jclepro.2014.10.061

A Comparative Analysis of Intersectoral CO2 Emission and Energy Consumption Linkages using the Environmental and Energy Input-Output Models in Türkiye

Year 2025, Volume: 12 Issue: 3, 971 - 996, 30.09.2025

Abstract

CO2 emissions are at the top of the global agenda nowadays due to their pollution effects on the environment and climate change. Efforts to mitigate sectoral CO2 emissions undoubtedly require a shift towards renewable energy sources in production processes. Inter-sectoral linkage analysis reveals how sectors can stimulate each other’s production, energy consumption, and CO2 emissions, thereby identifying sectors with the highest potential impact. The main purpose of this study is to reveal the important and key sectors for the output, energy consumption, and CO2 emissions, which are defined as the primary indicators in Türkiye. Inter-sectoral linkage coefficients of the primary indicators are estimated using the Hypothetical Extraction Method (HEM) from both supply and demand sides. The study uses environmental and energy input-output models. The 2014 national input-output table and sectoral CO2 emissions and energy consumption data are obtained from the World Input-Output Database (WIOD) for Türkiye. Firstly, in this study, food, land transport, non-metallic minerals, metal, trade, mining, and electricity and gas are found to be sectors with strong linkages. Then, construction and textiles are found to be the sectors that are indirectly responsible for the total CO2 emissions of the economy. The latest finding is that land transport occupies a pivotal role in the interconnection of the agricultural, industrial, and service sectors. Increasing the share of renewable energy sources in the energy consumption of the aforementioned sectors and their interconnected industries should be the policy priority to contribute efforts against climate change and mitigate the imported energy dependence of Türkiye.

Ethical Statement

Ethics Committee approval was not required for this study. The author declares that the study was conducted in accordance with research and publication ethics. The author confirms that AI tools was employed only for enhancing spelling and grammar, and augmenting the overall readability of the article. The author declares that there are no financial conflicts of interest involving any institution, organization, or individual associated with this article. The author affirms that the entire research process was performed by the sole declared author of the study.

Thanks

I would like to thank Assoc. Prof. Dr. Mehmet Şükrü Erdem and Prof. Dr. Selim Çağatay for their detailed and meticulous reading and useful commentaries.

References

  • Akbostancı, E., Tunç, G.İ. &Türüt-Aşık, S. (2011). CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Applied Energy, 88(6), 2273-2278. https://doi.org/10.1016/j.apenergy.2010.12.076
  • Akbostancı, E., Tunç, G.İ. &Türüt-Aşık, S. (2018). Drivers of fuel based carbon dioxide emissions: The case of Turkey. Renewable and Sustainable Energy Reviews, 81(2), 2599-2608. https://doi.org/10.1016/j.rser.2017.06.066
  • Ali, Y. (2015). Measuring CO2 emission linkages with the hypothetical extraction method (HEM). Ecological Indicators, 54, 171-183. https://doi.org/10.1016/j.ecolind.2015.02.021
  • Deng, G., Ma, Y., Zhang, L. & Liu, G. (2018). China’s embodied energy trade: Based on hypothetical extraction method and structural decomposition analysis. Energy Sources, Part B: Economics, Planning, and Policy. 13(11-12), 448-462. https://doi.org/10.1080/15567249.2019.1572836
  • Guerro, A. I. & Sancho, F. (2010). Measuring energy linkages with the hypothetical extraction method: An application to Spain. Energy Economics, 32(4). 831-837. https://doi.org/10.1016/j.eneco.2009.10.017
  • Hartono, D., Dachlan, A. N., Hastuti, S. H., Kartiasih, F., Saputri, N. K., Kurniawan, R., Surahman, U., Goembira, F. & Shirakawa, H. (2023). The impact of households on carbon dioxide emissions in Indonesia. Environmental Processes, 10(54), 1-20. https://doi.org/10.1007/s40710-023-00666-3
  • He, F., Yang, Y., Liu, X., Wang, D., Ji, J. & Yi, Z. (2021). Input-output analysis of China’s CO2 emissions in 2017 based on data of 149 sectors. Sustainability, 13(8), 1-27. https://doi.org/10.3390/su13084172
  • He, H., Gao, Y. & Wang, X. (2024). Applying the hypothetical eextraction method to investigate intersectoral carbon emission linkages of China’s transportation sector. Sustainability, 16(10), 1-15. https://doi.org/10.3390/su16104046
  • Heimler, A. (1991). Linkages and vertical integration in the Chinese economy. Review of Economics and Statistics, 52, 261-267.
  • Hirschman, A. O. (1958). The strategy of economic development, Yale University Press.
  • Jiang, T., Li, S., Yu, Y. & Peng, Y. (2022). Energy-related carbon emissions and structural emissions reduction of China’s construction industry: The perspective of input-output analysis. Environmental Science and Pollution Research, 29(26), 39515-39527. https://doi.org/10.1007/s11356-021-17604-1
  • Kaya, T. (2017). Unraveling the energy use network of construction sector in Turkey using structural path analysis. International Journal of Energy Economics and Policy, 7(1), 31-43.
  • Kumbaroğlu, G. (2011). A sectoral decomposition analysis of Turkish CO2 emissions over 1990-2007. Energy, 36(5), 2419-2433. https://doi.org/10.1016/j.energy.2011.01.027
  • Li, Z., & Song, Y. (2022). Energy consumption linkages of the Chinese construction sector. Energies, 15(5), 1-13. https://doi.org/10.3390/en15051761
  • Li, Z., Lin, Y. Y., Song, Y. & Li, Z. (2023). Linkages and flow paths of energy consumption: Evidence from China’s sectors. Energy Reports, 9, 4594-4603. https://doi.org/10.1016/j.egyr.2023.03.099
  • Liang, J., Wang, s., Liao, Y. & Feng, K. (2024). Carbon emissions embodied in investment: Assesing emission reduction responsibility through multi-regional input-output analysis. Applied Energy, 358, 1-13. https://doi.org/10.1016/j.apenergy.2023.122558
  • Liu, X., Vu, D., Perera, S. C., Wang, G. & Xiong, R. (2023). Nexus between water-energy-carbon footprint network: Multiregional input-output and coupling coordination degree analysis. Journal of Cleaner Production, 430, 1-13. https://doi.org/10.1016/j.jclepro.2023.139639
  • Luo, B., Huang, G., Chen, L., Liu, L. & Zhao, K. (2024). Factorial optimization-driven input-output analysis for socio-economic and environmental effects of GHG emission reduction in electric power systems-a Canadian case study. Renewable and Sustainable Energy Reviews, 192, 1-12. https://doi.org/10.1016/j.rser.2023.114227
  • Ma, Y., Song, Z., Li, S. & Jiang, T. (2020). Dynamic evaluation analysis of the factors driving the growth of energy-related CO2 emissions in China: An input-output analysis. PLOS ONE, 15(12), 1-19. https://doi.org/10.1371/journal.pone.0243557
  • Mangır, N. &Şahin, Ü.A. (2022). An environmentally extended global multi-regional input-output analysis of consumption-based and embodied import-based carbon emissions of Turkey. Environmental Science and Pollution Research, 29(36), 54813-54826. https://doi.org/10.1007/s11356-022-19290-z
  • Meller, P. &Marfán, M. (1981). Small and large industry: employment generation, linkages, and key sectors. Economic Development and Cultural Change, 29, 263-274.
  • Milana, C. (1885). Direct and indirect requirements for gross output in input-output systems. Metroeconomica, 37, 283-292.
  • Miller, R. E. & Blair, P. D. (2009). Input-Output Analysis: Foundations and Extentions (2nd ed.). Cambridge Universty Press.
  • Miller, R. E. & Blair, P. D. (2022). Input-output analysis: Foundations and extentions (3rd ed.). Cambridge Universty Press. https://doi.org/10.1017/9781108676212
  • Miller, R. E. & Lahr, M. L. (2001). A taxonomy of extractions. In M. L. Lahr (Ed.) Regional Science Perspectives in Economic Analysis (407-441). Elsevier.
  • Moon, J., Yun, E. & Lee, J. (2020). Identifying the sustainable industry by input-output analysis combined with CO2 emissions: A time series study from 2005-2015 in South Korea. Sustainability, 12(15), 1-4. https://doi.org/10.3390//su12156043
  • Ogungbile, A. J., Shen, G. Q., Xue, J. & Alabi, T. M. (2021). A hypothetical extraction method decomposition of intersectoral and interprovincial CO2 emission linkages of China’s construction sector. Sustainability, 13(24), 1-31. https://doi.org/10.3390/su132413917
  • Önder H. G. (2021). Renewable energy consumption policy in Turkey: An energy extended input-output analysis. Renewable Energy, 175, 783-796. https://doi.org/10.1016/j.renene.2021.05.025
  • Paelink, J., de Caevel, J. &Degueldre, J. (1965). Analyse quantitative de certainesphénomènes du dévelopment regional polarize: Essai de simulation statiqued’itéraires de propogation. In Problémes de Conversion Économique: Analyses Théoretiques et Études Appliquées (341-387). M.-Th. Génin.
  • Rasmussen, P. N. (1957). Studies in inter-sectoral relations, North-Holland.
  • Sajid, M. J. (2020). Inter-sectoral carbon ties and final demand in a high climate risk country: The case of Pakistan. Journal of Cleaner Production, 269, 1-15. https://doi.org/10.1016/j.jclepro.2020.122254
  • Sajid, M. J., Cao, Q., Cao, M. & Li, S. (2020). Sectoral carbon linkages of Indian economy based on hypothetical extraction model. International Journal of Climate Change Strategies and Management, 12(3), 323-347. https://doi.org/10.1108/IJCCSM-11-2018-0075
  • Sajid, M.J., Li, X. & Cao, Q. (2019). Demand and supply-side carbon linkages of Turkish economy using hypothetical extraction method. Journal of Cleaner Production, 228, 264-275. https://doi.org/10.1016/j.jclepro.2019.04.234
  • Schultz, S. (1976). Intersectoral comparisons as an approach to the identification of key sectors. In K. R. Polenske& J. V. Skolka (Eds.) Advances in Input-Output Analysis (137-159). Ballinger Publishing Company.
  • Schultz, S. (1977). Approaches to identifying key sectors empirically by means of input-output analysis. Journal of Development Studies, 14, 77-96.
  • Shao, M,, Dong, X. & Huang, H. (2024). Measurement of carbon emissions and responsibility sharing for the industrial sector in Zhejiang, China. Heliyon, 10(5), 1-10. https://doi.org/10.1016/j.heliyon.2024.e26505
  • Strassert, G. (1968). Zurbestimmungstrategischersektorenmithilfe von input-output modelen. JarbücherfürNationalökonomie und Statistik, 182(3), 211-215.
  • Sun, Y., Meng, F., Wang, D., Wang, Y., Liu, G. & Liu, L. (2024). Tracking the consumption-based CO2 emissions of typical Chinese megacities in multiscale economies. Journal of Cleaner Production, 450, 1-10. https://doi.org/10.1016/j.jclepro.2024.141758
  • Tsirimokos, C. (2022). Estimating energy interindustry linkages based on the hypothetical extraction method (HEM) in China and USA. International Journal of Environmental Studies, 79(4), 662-685. https://doi.org/10.1080/00207233.2021.1941670
  • Tsirimokos, C. (2023). Applying the hypothetical extraction method to investigate the interindustry greenhouse gas emissions linkages in the Greek economy. Journal of Environmental Economics and Policy, 13(1), 93-109. https://doi.org/10.1080/21606544.2023.2221206
  • Tunç, G.İ., Türüt-Aşık, S. &Akbostancı E. (2009). A decomposition analysis of CO2 emissions from energy use. Energy Policy, 37(11), 4689-4699. https://doi.org/10.1016/j.enpol.2009.06.019
  • Tunç, G.İ., Türüt-Aşık, S. &Akbostancı, E. (2007). CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy. Energy Policy, 35(2), 855-868. https://doi.org/10.1016/j.enpol.2006.02.012
  • Ueda, T. (2022). Structural decomposition analysis of Japan’s energy transitions and related CO2 emissions in 2005-2015 using a hybrit input-output table. Environmental and Resource Economics, 81(4), 763-786. https://doi.org/10.1007/s10640-022-00650-9
  • Wang, Q. & Liu, Y. (2021). Indıa’s renewable energy: New insights from multi-regional input-output and structural decomposition analysis. Journal of Cleaner Production, 283, 1-18. https://doi.org/10.1016/j.jclepro.2020.124230
  • Wang, S., Yu, Y., Jiang, T., &Nie, J. (2022). Analysis on carbon emissions efficiency differences and optimization evaluation of China’s industrial system: An input-output analysis. PLOS ONE, 17(3), 1-19. https://doi.org/10.1371/journal.pone.0258147
  • Wang, Y., Wang, W., Mao, G., Cai, H., Zuo, J., Wang, L. & Zhao, P. (2013). Industrial CO2 emissions in China based on the hypothetical extraction method: Linkage analysis. Energy Policy, 62, 1238-1244. https://doi.org/10.1016/j.enpol.2013.06.045
  • Xu, C., Zhu, Q., Li, X., Wu, L. & Deng, P. (2024). Determinants of global carbon emission and aggregate carbon intensity: A multi-region input-output approach. Economic Analysis and Policy,81, 418-435. https://doi.org/10.1016/j.eap.2023.12.002
  • Yan, J., Dong, H. & Jiang, T. (2022). Structural emission reduction in China’s industrial systems and energy systems: An input-output analysis. Environmental Science and Pollution Research, 29(4), 6010-6025. https://doi.org/10.1007/s11356-021-15447-4
  • Yu, Y., Li, S., Sun, H. &Taghizadeh-Hesary, F. (2021). Energy carbon emission reduction of China’s transportation sector. Economic Analysis and Policy, 69, 378-393. https://doi.org/10.1016/j.eap.2020.12.014
  • Zhang, Y. J., Bian, X. J. & Tan, W. (2018). The linkages of sectoral carbon dioxide emission caused by household consumption in China: Evidence from hypothetical extraction method. Empirical Economics, 54(4), 1743-1775. https://doi.org/10.1007/s00181-017-1272-z
  • Zhao, Y., Zhang, Z., Wang, S., Zhang, Y. & Liu, Y. (2015). Linkage analysis of sectoral CO2 emissions based on hypothetical extraction method in South Africa. Journal of Cleaner Production, 103(15), 916-924. https://doi.org/10.1016/j.jclepro.2014.10.061
There are 51 citations in total.

Details

Primary Language English
Subjects Environmental Economy, Industrial Economy
Journal Section Research Articles
Authors

Zafer Barış Gül 0000-0002-9991-7374

Publication Date September 30, 2025
Submission Date October 24, 2024
Acceptance Date August 14, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Gül, Z. B. (2025). A Comparative Analysis of Intersectoral CO2 Emission and Energy Consumption Linkages using the Environmental and Energy Input-Output Models in Türkiye. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 12(3), 971-996. https://doi.org/10.30798/makuiibf.1572960

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.