Research Article
BibTex RIS Cite

Çelik, Alüminyum ve Titanyum Alaşımlarında Hu2003 Akma Kriteri Performansının Araştırılması

Year 2019, , 1 - 18, 29.03.2019
https://doi.org/10.31200/makuubd.473166

Abstract

Sonlu
elemanlar analiz programlarının tahminlerinin doğruluğunu arttırmak için malzeme
modelinin doğru seçilmesi gerekmektedir. Çünkü her malzeme için her model iyi
tahmin yapamamaktadır. Bu çalışma kapsamında izotropik (von Mises, Tresca) ve
anizotropik (Hu2003) akma kriterlerinin çeşitli malzemeler için performansları
incelenmiştir. Hu2003 akma kriteri 7 parametre ile tahmin yapabilen bir modeldir.
Yapılan incelemeler sonucunda Hu2003 akma kriterinin çok başarılı tahminler
yaptığı görülmüştür.

References

  • Alizad-Kamran, M. vd. (2018). Determination of critical pressure in analyzing of rupture instability for hydromechanical deep drawing using advanced yield criterion. Archives of Civil and Mechanical Engineering, (18), 103-113 doi:https://doi.org/10.1016/j.acme.2017.05.008
  • Aretz, H. (2005). A non-quadratic plane stress yield function for orthotropic sheet metals. Journal of Materials Processing Technology, (168), 1-9 doi:https://doi.org/10.1016/j.jmatprotec.2004.10.008
  • Banabic, D. vd. (2005). An improved analytical description of orthotropy in metallic sheets. International Journal of Plasticity, (21), 493-512 doi:https://doi.org/10.1016/j.ijplas.2004.04.003
  • Banabic, D. vd. (2016) Plastic Behaviour of Sheet Metals. In: Multiscale Modelling in Sheet Metal Forming. Springer, pp 1-46
  • Banabic, D. & Siegert, K. (2004). Anisotropy and formability of AA5182-0 aluminium alloy sheets. CIRP Annals, (53), 219-222 doi:https://doi.org/10.1016/S0007-8506(07)60683-0
  • Barlat, F. & Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, (5), 51-66 doi:http://dx.doi.org/10.1016/0749-6419(89)90019-3
  • Cazacu, O. (2018). New yield criteria for isotropic and textured metallic materials. International Journal of Solids and Structures, (139-140), 200-210 doi:https://doi.org/10.1016/j.ijsolstr.2018.01.036
  • Choi, H. J. vd. (2017). Effect of Evolutionary Anisotropy on Earing Prediction in Cylindrical Cup Drawing. JOM, (69), 915-921 doi:https://doi.org/10.1007/s11837-016-2241-2
  • Cogun, F. & Darendeliler, H. (2017). Comparison of different yield criteria in various deep drawn cups. Int J Mater Form, (10), 85-98 doi:https://doi.org/10.1007/s12289-015-1258-3
  • Comsa, D.-S. & Banabic, D. (2008). Plane-stress yield criterion for highly-anisotropic sheet metals. In: Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET. pp 43-48
  • Drucker, D. C. (1949). Relation of experiments to mathematical theories of plasticity. Journal of Applied Mechanics-Transactions of the Asme, (16), 349-357
  • Gotoh, M. (1977). A theory of plastic anisotropy based on a yield function of fourth order (plane stress state)—I. International Journal of Mechanical Sciences, (19), 505-512 doi:https://doi.org/10.1016/0020-7403(77)90043-1
  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, (193), 281-297 doi:https://doi.org/10.1098/rspa.1948.0045
  • Hu, W. (2003). Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Materials Science and Engineering: A, (345), 139-144 doi:https://doi.org/10.1016/S0921-5093(02)00453-7
  • Kilic, S. vd. (2015). Effects of Pre-strain and Temperature on Bake Hardening of TWIP900CR Steel. Journal of Iron and Steel Research, International, (22), 361-365 doi:https://doi.org/10.1016/S1006-706X(15)30012-1
  • Kılıç, S. & Öztürk, F. (2016). Comparison of performances of commercial TWIP900 and DP600 advanced high strength steels in automotive industry. Journal of the Faculty of Engineering and Architecture of Gazi University, (31), 567-578 doi:https://doi.org/10.17341/gummfd.81389
  • Kotkunde, N. vd. (2014). Experimental and numerical investigation of anisotropic yield criteria for warm deep drawing of Ti–6Al–4V alloy. Materials & Design, (63), 336-344 doi:https://doi.org/10.1016/j.matdes.2014.06.017
  • Leacock, A. G. (2006). A mathematical description of orthotropy in sheet metals. Journal of the Mechanics and Physics of Solids, (54), 425-444 doi:https://doi.org/10.1016/j.jmps.2005.08.008
  • Lutz Kessler vd. (2012) Challenges in Material Model Selection for Forming Simulation. Erişim tarihi: 01.01.2018, https://www.autosteel.org/-/media/files/autosteel/great-designs-in-steel/gdis-2012/challenges-in-material-model-selection-for-forming-simulation.ashx.
  • Mises, R. v. (1913). Mechanics of solid bodies in the plastically-deformable state. Göttin Nachr Math Phys, (1), 582-592
  • Ozturk, F. vd. (2014) Effects of anisotropic yield functions on prediction of forming limit diagrams of DP600 advanced high strength steel. In: Ishikawa T., Mori K. I. (eds) 11th International Conference on Technology of Plasticity, Ictp 2014, vol 81. Procedia Engineering. pp 760-765. doi:https://doi.org/10.1016/j.proeng.2014.10.073
  • Revil-Baudard, B. vd. (2018). Effect of the yield stresses in uniaxial tension and pure shear on the size of the plastic zone near a crack. International Journal of Plasticity, (102), 101-117 doi:https://doi.org/10.1016/j.ijplas.2017.12.006
  • Tong, W. (2018). An Improved Method of Determining Gotoh’s Nine Material Constants for a Sheet Metal with only Seven or Less Experimental Inputs. International Journal of Mechanical Sciences, doi:https://doi.org/10.1016/j.ijmecsci.2018.03.018
  • Tresca, H. (1864). Memoir on the flow of solid bodies under strong pressure. Comptes-rendus de l’académie des sciences, (59), 754-758
Year 2019, , 1 - 18, 29.03.2019
https://doi.org/10.31200/makuubd.473166

Abstract

References

  • Alizad-Kamran, M. vd. (2018). Determination of critical pressure in analyzing of rupture instability for hydromechanical deep drawing using advanced yield criterion. Archives of Civil and Mechanical Engineering, (18), 103-113 doi:https://doi.org/10.1016/j.acme.2017.05.008
  • Aretz, H. (2005). A non-quadratic plane stress yield function for orthotropic sheet metals. Journal of Materials Processing Technology, (168), 1-9 doi:https://doi.org/10.1016/j.jmatprotec.2004.10.008
  • Banabic, D. vd. (2005). An improved analytical description of orthotropy in metallic sheets. International Journal of Plasticity, (21), 493-512 doi:https://doi.org/10.1016/j.ijplas.2004.04.003
  • Banabic, D. vd. (2016) Plastic Behaviour of Sheet Metals. In: Multiscale Modelling in Sheet Metal Forming. Springer, pp 1-46
  • Banabic, D. & Siegert, K. (2004). Anisotropy and formability of AA5182-0 aluminium alloy sheets. CIRP Annals, (53), 219-222 doi:https://doi.org/10.1016/S0007-8506(07)60683-0
  • Barlat, F. & Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, (5), 51-66 doi:http://dx.doi.org/10.1016/0749-6419(89)90019-3
  • Cazacu, O. (2018). New yield criteria for isotropic and textured metallic materials. International Journal of Solids and Structures, (139-140), 200-210 doi:https://doi.org/10.1016/j.ijsolstr.2018.01.036
  • Choi, H. J. vd. (2017). Effect of Evolutionary Anisotropy on Earing Prediction in Cylindrical Cup Drawing. JOM, (69), 915-921 doi:https://doi.org/10.1007/s11837-016-2241-2
  • Cogun, F. & Darendeliler, H. (2017). Comparison of different yield criteria in various deep drawn cups. Int J Mater Form, (10), 85-98 doi:https://doi.org/10.1007/s12289-015-1258-3
  • Comsa, D.-S. & Banabic, D. (2008). Plane-stress yield criterion for highly-anisotropic sheet metals. In: Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET. pp 43-48
  • Drucker, D. C. (1949). Relation of experiments to mathematical theories of plasticity. Journal of Applied Mechanics-Transactions of the Asme, (16), 349-357
  • Gotoh, M. (1977). A theory of plastic anisotropy based on a yield function of fourth order (plane stress state)—I. International Journal of Mechanical Sciences, (19), 505-512 doi:https://doi.org/10.1016/0020-7403(77)90043-1
  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, (193), 281-297 doi:https://doi.org/10.1098/rspa.1948.0045
  • Hu, W. (2003). Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Materials Science and Engineering: A, (345), 139-144 doi:https://doi.org/10.1016/S0921-5093(02)00453-7
  • Kilic, S. vd. (2015). Effects of Pre-strain and Temperature on Bake Hardening of TWIP900CR Steel. Journal of Iron and Steel Research, International, (22), 361-365 doi:https://doi.org/10.1016/S1006-706X(15)30012-1
  • Kılıç, S. & Öztürk, F. (2016). Comparison of performances of commercial TWIP900 and DP600 advanced high strength steels in automotive industry. Journal of the Faculty of Engineering and Architecture of Gazi University, (31), 567-578 doi:https://doi.org/10.17341/gummfd.81389
  • Kotkunde, N. vd. (2014). Experimental and numerical investigation of anisotropic yield criteria for warm deep drawing of Ti–6Al–4V alloy. Materials & Design, (63), 336-344 doi:https://doi.org/10.1016/j.matdes.2014.06.017
  • Leacock, A. G. (2006). A mathematical description of orthotropy in sheet metals. Journal of the Mechanics and Physics of Solids, (54), 425-444 doi:https://doi.org/10.1016/j.jmps.2005.08.008
  • Lutz Kessler vd. (2012) Challenges in Material Model Selection for Forming Simulation. Erişim tarihi: 01.01.2018, https://www.autosteel.org/-/media/files/autosteel/great-designs-in-steel/gdis-2012/challenges-in-material-model-selection-for-forming-simulation.ashx.
  • Mises, R. v. (1913). Mechanics of solid bodies in the plastically-deformable state. Göttin Nachr Math Phys, (1), 582-592
  • Ozturk, F. vd. (2014) Effects of anisotropic yield functions on prediction of forming limit diagrams of DP600 advanced high strength steel. In: Ishikawa T., Mori K. I. (eds) 11th International Conference on Technology of Plasticity, Ictp 2014, vol 81. Procedia Engineering. pp 760-765. doi:https://doi.org/10.1016/j.proeng.2014.10.073
  • Revil-Baudard, B. vd. (2018). Effect of the yield stresses in uniaxial tension and pure shear on the size of the plastic zone near a crack. International Journal of Plasticity, (102), 101-117 doi:https://doi.org/10.1016/j.ijplas.2017.12.006
  • Tong, W. (2018). An Improved Method of Determining Gotoh’s Nine Material Constants for a Sheet Metal with only Seven or Less Experimental Inputs. International Journal of Mechanical Sciences, doi:https://doi.org/10.1016/j.ijmecsci.2018.03.018
  • Tresca, H. (1864). Memoir on the flow of solid bodies under strong pressure. Comptes-rendus de l’académie des sciences, (59), 754-758
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Süleyman Kılıç 0000-0002-1681-9403

Fahrettin Öztürk 0000-0001-9517-7957

Serkan Toros 0000-0003-0438-2862

Publication Date March 29, 2019
Acceptance Date October 23, 2018
Published in Issue Year 2019

Cite

APA Kılıç, S., Öztürk, F., & Toros, S. (2019). Çelik, Alüminyum ve Titanyum Alaşımlarında Hu2003 Akma Kriteri Performansının Araştırılması. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 3(1), 1-18. https://doi.org/10.31200/makuubd.473166