Research Article
BibTex RIS Cite

3B baskı hızının odun-PLA kompozit filamentin mekanik ve termal özelliklerine etkisi

Year 2024, , 97 - 106, 30.06.2024
https://doi.org/10.33725/mamad.1486558

Abstract

Bu çalışma, odun unu dolgulu filamentlerin 3 boyut (3B) yazıcıda yazdırılmasında, baskı hızındaki değişikliğin malzeme özellikleri üzerindeki etkisini incelenmek amacıyla yapılmıştır. İlk önce gürgen odun unu Polilaktik asit (PLA) polimerine ilave edildikten sonra çift vidalı ekstruderde karıştırılmış ve ardından 1.75 mm çapında odun-PLA kompozit filamenti üretilmiştir. Daha sonra, üretilen odun-PLA kompozit filamentinden 3B yazıcı kullanılarak farklı baskı hızlarında (40-50-60 mm/s) test numuneleri yazdırılmıştır. 3B yazdırılmış numunelerin mekanik özelliklerini belirlemek için çekme mukavemeti ve sertlik testleri yapılmıştır. Çekme mukavemeti testi sonuçlarına göre 3B yazdırılmış örneklerin çekme mukavemetleri baskı hızındaki değişiklik ile farklı değerler sergilemiştir. En yüksek çekme mukavemeti değeri 50 mm/s baskı hızında 23.02 MPa, en düşük çekme mukavemeti değeri ise 40 mm/s baskı hızında 22.14 MPa olarak tespit edilmiştir. Shore D testi sonuçlarına göre en düşük sertlik değeri 40 mm/s baskı hızında 85.33 olarak, en yüksek değer ise 60 mm/s baskı hızında 86.1 olarak ölçülmüştür. Diferaniyel Taramalı Kalorimetre (DSC) sonuçlarına göre 3B baskı hızı artışı ile PLA’nın kristallik yüzdesi önce artmış, sonra azalmıştır. Buna ek olarak, 3B baskı hızının PLA’nın erime sıcaklıklarına çok fazla etkisi olmamıştır.

References

  • Alkahari, M. R., Rosli, N. A., Majid, S. N. A., Maidin, S., Herawan, S. G., Ramli, F. R. (2021). Properties of 3D printed structure manufactured with integrated pressing mechanism in FDM. J. Mech. Eng. Res. Dev, 44(2), 122-131
  • ASTM D2240 (2021), Standard test method for rubber property-durometer hardness, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States, 1–27 s.
  • ASTM D638 (2022), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, 1–24 s.
  • Bal, B. C., (2023), Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70-79, DOI: 10.33725/mamad.1301384
  • Bal, B. C., Altuntaş E., Narlıoğlu N., (2023), Some selected properties of composite material produced from plastic furniture waste and wood flour, Furniture and Wooden Material Research Journal, 6 (2), 233-244, DOI: 10.33725/mamad.1384214
  • Blok, L. G., Longana, M. L., Yu, H., Woods, B. K. (2018). An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing, 22, 176-186, DOI: 10.1016/j.addma.2018.04.039 Chung, H. J., Lee, E. J., Lim, S. T. (2002). Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches. Carbohydrate Polymers, 48(3), 287-298, DOI: 10.1016/S0144-8617(01)00259-4
  • Fodor, F., Németh, R., Lankveld, C., Hofmann, T. (2018). Effect of acetylation on the chemical composition of hornbeam (Carpinus betulus L.) in relation with the physical and mechanical properties. Wood Material Science & Engineering, 13(5), 271-278, DOI: 10.1080/17480272.2017.1316773
  • Forrest, J. A., Veress, K. D (2001). The glass transition in thin polymer films. Advances in Colloid and Interface Science, 94(1-3), 167-195, DOI: 10.1016/S0001-8686(01)00060-4
  • Höhne, G. W. H., Hemminger, W., Flammersheim, H. J. (2003). Differential scanning calorimetry, Vol. 2, pp. 9-30. Berlin: Springer, DOI: 10.1007/978-3-662-06710-9 Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., Asyraf, M. R. M., Ishak, M. R., Razman, M. R., Nurazzi, N. M., Norrrahim, M. N. F., Abral, H., Asrofi, M. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326, DOI: 10.3390/polym13081326
  • Karabağ, D., Tekkanat, M. A., Anaç, N., Koçar, O. (2023). Investigation of adhesive bonding strength of wood added PLA materials. Furniture and Wooden Material Research Journal, 6(1), 26-38, DOI: 10.33725/mamad.1304449 Kariz, M., Sernek, M., Kuzman, M. K. (2018). Effect of humidity on 3D-printed specimens from wood-PLA filaments. Wood Res, 63(5), 917-922.
  • Khosravani, M. R., Reinicke, T. (2020). Effects of raster layup and printing speed on strength of 3D-printed structural components. Procedia Structural Integrity, 28, 720-725, DOI: 10.1016/j.prostr.2020.10.083
  • Kim, J. K. Pal, K. (2010). Recent Advances in the Processing of Wood-Plastic Composites, Springer Science & Business Media.
  • Kuo, C. C., Liu, L. C., Teng, W. F., Chang, H. Y., Chien, F. M., Liao, S. J., Kuo, W. F., Chen, C. M. (2016). Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 86, 36-39, DOI: 10.1016/j.compositesb.2015.10.005 Tao, Y., Wang, H., Li, Z., Li, P., Shi, S. Q. (2017). Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials, 10(4), 339, DOI: 10.3390/ma10040339
  • Tisserat, B., Liu, Z., Finkenstadt, V., Lewandowski, B., Ott, S., Reifschneider, L. (2015). 3D printing biocomposites. J. Plast. Res. Online, 1-3, DOI: 10.2417/spepro.005690
  • Tümer, E. H., Erbil, H. Y. (2021). Extrusion-based 3D printing applications of PLA composites: a review. Coatings, 11(4), 390, DOI: 10.3390/coatings11040390
  • Wimmer, R., Steyrer, B., Woess, J., Koddenberg, T., Mundigler, N. (2015). 3D printing and wood. Pro Ligno, 2015, 11(4), 144-149.

Effect of 3D printing speed on mechanical and thermal properties of wood-PLA composite filament

Year 2024, , 97 - 106, 30.06.2024
https://doi.org/10.33725/mamad.1486558

Abstract

This study was carried out to examine the effect of the change in printing speed on the material properties of printing wood flour-filled filaments on a 3D printer. First, hornbeam wood flour was added to the Polylactic acid (PLA) polymer and then mixed in a twin-screw extruder, and then a wood-PLA composite filament with a diameter of 1.75 mm was produced. Then, test samples were printed from the produced wood-PLA composite filament at different printing speeds (40-50-60 mm/s) using a 3D printer. Tensile strength and hardness tests were performed to determine the mechanical properties of the 3D printed samples. According to the tensile strength test results, the tensile strengths of the 3D printed samples exhibited different values with the change in printing speed. The highest tensile strength value was determined as 23.02 MPa at a printing speed of 50 mm/s, and the lowest tensile strength value was 22.14 MPa at a printing speed of 40 mm/s. According to the Shore D test results, the lowest hardness value was measured as 85.33 at a printing speed of 40 mm/s, and the highest value was measured as 86.1 at a printing speed of 60 mm/s. The crystallinity percentage of PLA first increased and then decreased with the increase in 3D printing speed according to the Differential Scanning Calorimetry (DSC) results. In addition, 3D printing speed did not have much effect on the melting temperatures of PLA.

References

  • Alkahari, M. R., Rosli, N. A., Majid, S. N. A., Maidin, S., Herawan, S. G., Ramli, F. R. (2021). Properties of 3D printed structure manufactured with integrated pressing mechanism in FDM. J. Mech. Eng. Res. Dev, 44(2), 122-131
  • ASTM D2240 (2021), Standard test method for rubber property-durometer hardness, American Society for Testing and Materials, West Conshohocken, Pennsylvania, United States, 1–27 s.
  • ASTM D638 (2022), Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA, 1–24 s.
  • Bal, B. C., (2023), Comparative study of some properties of wood plastic composite materials produced with polyethylene, wood flour and glass flour, Furniture and Wooden Material Research Journal, 6(1), 70-79, DOI: 10.33725/mamad.1301384
  • Bal, B. C., Altuntaş E., Narlıoğlu N., (2023), Some selected properties of composite material produced from plastic furniture waste and wood flour, Furniture and Wooden Material Research Journal, 6 (2), 233-244, DOI: 10.33725/mamad.1384214
  • Blok, L. G., Longana, M. L., Yu, H., Woods, B. K. (2018). An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing, 22, 176-186, DOI: 10.1016/j.addma.2018.04.039 Chung, H. J., Lee, E. J., Lim, S. T. (2002). Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches. Carbohydrate Polymers, 48(3), 287-298, DOI: 10.1016/S0144-8617(01)00259-4
  • Fodor, F., Németh, R., Lankveld, C., Hofmann, T. (2018). Effect of acetylation on the chemical composition of hornbeam (Carpinus betulus L.) in relation with the physical and mechanical properties. Wood Material Science & Engineering, 13(5), 271-278, DOI: 10.1080/17480272.2017.1316773
  • Forrest, J. A., Veress, K. D (2001). The glass transition in thin polymer films. Advances in Colloid and Interface Science, 94(1-3), 167-195, DOI: 10.1016/S0001-8686(01)00060-4
  • Höhne, G. W. H., Hemminger, W., Flammersheim, H. J. (2003). Differential scanning calorimetry, Vol. 2, pp. 9-30. Berlin: Springer, DOI: 10.1007/978-3-662-06710-9 Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., Asyraf, M. R. M., Ishak, M. R., Razman, M. R., Nurazzi, N. M., Norrrahim, M. N. F., Abral, H., Asrofi, M. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8), 1326, DOI: 10.3390/polym13081326
  • Karabağ, D., Tekkanat, M. A., Anaç, N., Koçar, O. (2023). Investigation of adhesive bonding strength of wood added PLA materials. Furniture and Wooden Material Research Journal, 6(1), 26-38, DOI: 10.33725/mamad.1304449 Kariz, M., Sernek, M., Kuzman, M. K. (2018). Effect of humidity on 3D-printed specimens from wood-PLA filaments. Wood Res, 63(5), 917-922.
  • Khosravani, M. R., Reinicke, T. (2020). Effects of raster layup and printing speed on strength of 3D-printed structural components. Procedia Structural Integrity, 28, 720-725, DOI: 10.1016/j.prostr.2020.10.083
  • Kim, J. K. Pal, K. (2010). Recent Advances in the Processing of Wood-Plastic Composites, Springer Science & Business Media.
  • Kuo, C. C., Liu, L. C., Teng, W. F., Chang, H. Y., Chien, F. M., Liao, S. J., Kuo, W. F., Chen, C. M. (2016). Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 86, 36-39, DOI: 10.1016/j.compositesb.2015.10.005 Tao, Y., Wang, H., Li, Z., Li, P., Shi, S. Q. (2017). Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials, 10(4), 339, DOI: 10.3390/ma10040339
  • Tisserat, B., Liu, Z., Finkenstadt, V., Lewandowski, B., Ott, S., Reifschneider, L. (2015). 3D printing biocomposites. J. Plast. Res. Online, 1-3, DOI: 10.2417/spepro.005690
  • Tümer, E. H., Erbil, H. Y. (2021). Extrusion-based 3D printing applications of PLA composites: a review. Coatings, 11(4), 390, DOI: 10.3390/coatings11040390
  • Wimmer, R., Steyrer, B., Woess, J., Koddenberg, T., Mundigler, N. (2015). 3D printing and wood. Pro Ligno, 2015, 11(4), 144-149.
There are 16 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials, Forest Industry Engineering (Other)
Journal Section Articles
Authors

Nasır Narlıoğlu 0000-0002-1295-6558

Publication Date June 30, 2024
Submission Date May 19, 2024
Acceptance Date June 13, 2024
Published in Issue Year 2024

Cite

APA Narlıoğlu, N. (2024). Effect of 3D printing speed on mechanical and thermal properties of wood-PLA composite filament. Mobilya Ve Ahşap Malzeme Araştırmaları Dergisi, 7(1), 97-106. https://doi.org/10.33725/mamad.1486558

Uluslararası Dergidir

32217    18332 18333   3221918334 18335   18336   18339   18434   32216 32218  32220 32221 download download    

32275   32308  32309 


32332  32384  32385 32400