BibTex RIS Cite

Interpolation And The Lagrange Polynomal

Year 2012, Volume: 2 Issue: 13, 23 - 37, 01.01.2012

Abstract

We show that the interpolation polynomial in the lagrange form canbe calculatetod with the some numbers of the arithetic operations. Given a set of n+1 data points and a function f, the aim is to determine a polynomial of degree n which interpolates f at the points inquestion

References

  • Aho. A.V. Hopcroft J.E and Ullman J.D. The desing and analysis of computer algoritms, Addison Wesley.reading mass. 470 pp. Qa76.6.A.36 (1974)
  • Ames. W.F Numerial methods for partial differential equations (second edition).Academic pres. New York: 365 pp QA374 A46 (1977).
  • Bailey N.T.J., The mathematical theory of epidemics, C.griffin.london: 194 pp. RA652. B3 (1957).
  • Barnadelli H. ”Population Waves” Journal of the Burma Research society: 31, 1-18 (1941).
  • Birkhoff.G. and Rota G. Ordinary differential equations. John wiley&sons New York: 342 pp. QA372.B58 (1978).
  • Bracewel.R. The fourier transform and its application (second edition). McGaw Hill. New York: 444 pp. QA403.5.B7 (1978).
  • Belirsch.R, Bemerkungen zur romberg-integration, Numerische Mathematik 6.6.16 (1964).
  • Fehlberg.E., New high-order Runge-Kutta formulas with step-size control for systems of first-and second-order differential equations, Zeitschrift für angewandte mathematic and mechanic.44.17-29. (1964).
  • Gladwell.I. and R.Wait. A survey of numerical methods for partial differential equations. Oxford university pres; 424 pp. QA377. S96 (1979).
  • Golub,G.H,and Van Loan C.F. Matrix computations, John Hopkins university press Baltimore; 476 pp. QA188. G65 (1963)
  • Hamming.R.W. Numerical methods for scientists and engineers (second edition). McGraw-hill,New York; 721 pp QA297. H28 (1973).
  • Householder.A.S. The numerical treatment of a single nonlinear equation McGraw-Hill, New York;216 pp QA218.H68 (1970).
  • Wilkinson .J.H. The algebraıc eigenvalue problem.Clarendon pres.oxford; 64 pp.QA218.W5 (1965).

Year 2012, Volume: 2 Issue: 13, 23 - 37, 01.01.2012

Abstract

References

  • Aho. A.V. Hopcroft J.E and Ullman J.D. The desing and analysis of computer algoritms, Addison Wesley.reading mass. 470 pp. Qa76.6.A.36 (1974)
  • Ames. W.F Numerial methods for partial differential equations (second edition).Academic pres. New York: 365 pp QA374 A46 (1977).
  • Bailey N.T.J., The mathematical theory of epidemics, C.griffin.london: 194 pp. RA652. B3 (1957).
  • Barnadelli H. ”Population Waves” Journal of the Burma Research society: 31, 1-18 (1941).
  • Birkhoff.G. and Rota G. Ordinary differential equations. John wiley&sons New York: 342 pp. QA372.B58 (1978).
  • Bracewel.R. The fourier transform and its application (second edition). McGaw Hill. New York: 444 pp. QA403.5.B7 (1978).
  • Belirsch.R, Bemerkungen zur romberg-integration, Numerische Mathematik 6.6.16 (1964).
  • Fehlberg.E., New high-order Runge-Kutta formulas with step-size control for systems of first-and second-order differential equations, Zeitschrift für angewandte mathematic and mechanic.44.17-29. (1964).
  • Gladwell.I. and R.Wait. A survey of numerical methods for partial differential equations. Oxford university pres; 424 pp. QA377. S96 (1979).
  • Golub,G.H,and Van Loan C.F. Matrix computations, John Hopkins university press Baltimore; 476 pp. QA188. G65 (1963)
  • Hamming.R.W. Numerical methods for scientists and engineers (second edition). McGraw-hill,New York; 721 pp QA297. H28 (1973).
  • Householder.A.S. The numerical treatment of a single nonlinear equation McGraw-Hill, New York;216 pp QA218.H68 (1970).
  • Wilkinson .J.H. The algebraıc eigenvalue problem.Clarendon pres.oxford; 64 pp.QA218.W5 (1965).
There are 13 citations in total.

Details

Primary Language English
Authors

M. Karakas This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 2 Issue: 13

Cite

APA Karakas, M. (2012). Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences, 2(13), 23-37. https://izlik.org/JA62EX79RR
AMA 1.Karakas M. Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences. 2012;2(13):23-37. https://izlik.org/JA62EX79RR
Chicago Karakas, M. 2012. “Interpolation And The Lagrange Polynomal”. Manas Journal of Natural Sciences 2 (13): 23-37. https://izlik.org/JA62EX79RR.
EndNote Karakas M (January 1, 2012) Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences 2 13 23–37.
IEEE [1]M. Karakas, “Interpolation And The Lagrange Polynomal”, Manas Journal of Natural Sciences, vol. 2, no. 13, pp. 23–37, Jan. 2012, [Online]. Available: https://izlik.org/JA62EX79RR
ISNAD Karakas, M. “Interpolation And The Lagrange Polynomal”. Manas Journal of Natural Sciences 2/13 (January 1, 2012): 23-37. https://izlik.org/JA62EX79RR.
JAMA 1.Karakas M. Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences. 2012;2:23–37.
MLA Karakas, M. “Interpolation And The Lagrange Polynomal”. Manas Journal of Natural Sciences, vol. 2, no. 13, Jan. 2012, pp. 23-37, https://izlik.org/JA62EX79RR.
Vancouver 1.Karakas M. Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences [Internet]. 2012 Jan. 1;2(13):23-37. Available from: https://izlik.org/JA62EX79RR