BibTex RIS Cite

Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients

Year 2012, Volume: 2 Issue: 13, 65 - 75, 01.01.2012

Abstract

The KG- method is the method which contains the advantages of the Cramer and Gauss methods. In this paper we use KG-method to solve the systems of linear algebraic equations with three diagonals matrix of coefficients. This type of systems is broadly used in the computational mathematics.

References

  • Borevich L.M. Opredeliteli I matritsi, Moskva, Nauka 90 pp. 1988.
  • Кydyraliev S.K., Urdaletova A.B., Reshenie system lineinyh uravnenii metodom KG, Manas universiteti, Tabigii ilimder jurnaly, 2, (2002):144-161.
  • Margaret L. Lial, Charles D.Miller, Finite Mathematics and Calculus, Scott, Foresman and Company, 1100 p.,1989.
  • Cozzens M., Porter R., Mathematics with Calculus, D.C. Heath and Company, 860 p., 1987.
  • Кydyraliev S.K., Sklyar S.N., Urdaletova A.B., Ispolzovanie metoda KG dlya resheniya system lineinyh algebraicheskih uravnenii. Vyshee obrazovanie Kyrgyzskoi Respubliki, 2/12, (2008): 12-22.
Year 2012, Volume: 2 Issue: 13, 65 - 75, 01.01.2012

Abstract

References

  • Borevich L.M. Opredeliteli I matritsi, Moskva, Nauka 90 pp. 1988.
  • Кydyraliev S.K., Urdaletova A.B., Reshenie system lineinyh uravnenii metodom KG, Manas universiteti, Tabigii ilimder jurnaly, 2, (2002):144-161.
  • Margaret L. Lial, Charles D.Miller, Finite Mathematics and Calculus, Scott, Foresman and Company, 1100 p.,1989.
  • Cozzens M., Porter R., Mathematics with Calculus, D.C. Heath and Company, 860 p., 1987.
  • Кydyraliev S.K., Sklyar S.N., Urdaletova A.B., Ispolzovanie metoda KG dlya resheniya system lineinyh algebraicheskih uravnenii. Vyshee obrazovanie Kyrgyzskoi Respubliki, 2/12, (2008): 12-22.
There are 5 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

A.d. Urdaletova This is me

S.n. Skliar This is me

S.k. Kydyraliev This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 2 Issue: 13

Cite

APA Urdaletova, A., Skliar, S., & Kydyraliev, S. (2012). Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients. Manas Journal of Natural Sciences, 2(13), 65-75.
AMA Urdaletova A, Skliar S, Kydyraliev S. Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients. Manas Journal of Natural Sciences. January 2012;2(13):65-75.
Chicago Urdaletova, A.d., S.n. Skliar, and S.k. Kydyraliev. “Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients”. Manas Journal of Natural Sciences 2, no. 13 (January 2012): 65-75.
EndNote Urdaletova A, Skliar S, Kydyraliev S (January 1, 2012) Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients. Manas Journal of Natural Sciences 2 13 65–75.
IEEE A. Urdaletova, S. Skliar, and S. Kydyraliev, “Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients”, Manas Journal of Natural Sciences, vol. 2, no. 13, pp. 65–75, 2012.
ISNAD Urdaletova, A.d. et al. “Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients”. Manas Journal of Natural Sciences 2/13 (January 2012), 65-75.
JAMA Urdaletova A, Skliar S, Kydyraliev S. Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients. Manas Journal of Natural Sciences. 2012;2:65–75.
MLA Urdaletova, A.d. et al. “Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients”. Manas Journal of Natural Sciences, vol. 2, no. 13, 2012, pp. 65-75.
Vancouver Urdaletova A, Skliar S, Kydyraliev S. Improvement Of The Kg-Method To Solve The Systems Of Algebraic Equations With Three Diagonals Matrix Of Coefficients. Manas Journal of Natural Sciences. 2012;2(13):65-7.