BibTex RIS Cite

Interpolation And The Lagrange Polynomal

Year 2012, Volume: 2 Issue: 13, 23 - 37, 01.01.2012

Abstract

We show that the interpolation polynomial in the lagrange form canbe calculatetod with the some numbers of the arithetic operations. Given a set of n+1 data points and a function f, the aim is to determine a polynomial of degree n which interpolates f at the points inquestion

References

  • Aho. A.V. Hopcroft J.E and Ullman J.D. The desing and analysis of computer algoritms, Addison Wesley.reading mass. 470 pp. Qa76.6.A.36 (1974)
  • Ames. W.F Numerial methods for partial differential equations (second edition).Academic pres. New York: 365 pp QA374 A46 (1977).
  • Bailey N.T.J., The mathematical theory of epidemics, C.griffin.london: 194 pp. RA652. B3 (1957).
  • Barnadelli H. ”Population Waves” Journal of the Burma Research society: 31, 1-18 (1941).
  • Birkhoff.G. and Rota G. Ordinary differential equations. John wiley&sons New York: 342 pp. QA372.B58 (1978).
  • Bracewel.R. The fourier transform and its application (second edition). McGaw Hill. New York: 444 pp. QA403.5.B7 (1978).
  • Belirsch.R, Bemerkungen zur romberg-integration, Numerische Mathematik 6.6.16 (1964).
  • Fehlberg.E., New high-order Runge-Kutta formulas with step-size control for systems of first-and second-order differential equations, Zeitschrift für angewandte mathematic and mechanic.44.17-29. (1964).
  • Gladwell.I. and R.Wait. A survey of numerical methods for partial differential equations. Oxford university pres; 424 pp. QA377. S96 (1979).
  • Golub,G.H,and Van Loan C.F. Matrix computations, John Hopkins university press Baltimore; 476 pp. QA188. G65 (1963)
  • Hamming.R.W. Numerical methods for scientists and engineers (second edition). McGraw-hill,New York; 721 pp QA297. H28 (1973).
  • Householder.A.S. The numerical treatment of a single nonlinear equation McGraw-Hill, New York;216 pp QA218.H68 (1970).
  • Wilkinson .J.H. The algebraıc eigenvalue problem.Clarendon pres.oxford; 64 pp.QA218.W5 (1965).
Year 2012, Volume: 2 Issue: 13, 23 - 37, 01.01.2012

Abstract

References

  • Aho. A.V. Hopcroft J.E and Ullman J.D. The desing and analysis of computer algoritms, Addison Wesley.reading mass. 470 pp. Qa76.6.A.36 (1974)
  • Ames. W.F Numerial methods for partial differential equations (second edition).Academic pres. New York: 365 pp QA374 A46 (1977).
  • Bailey N.T.J., The mathematical theory of epidemics, C.griffin.london: 194 pp. RA652. B3 (1957).
  • Barnadelli H. ”Population Waves” Journal of the Burma Research society: 31, 1-18 (1941).
  • Birkhoff.G. and Rota G. Ordinary differential equations. John wiley&sons New York: 342 pp. QA372.B58 (1978).
  • Bracewel.R. The fourier transform and its application (second edition). McGaw Hill. New York: 444 pp. QA403.5.B7 (1978).
  • Belirsch.R, Bemerkungen zur romberg-integration, Numerische Mathematik 6.6.16 (1964).
  • Fehlberg.E., New high-order Runge-Kutta formulas with step-size control for systems of first-and second-order differential equations, Zeitschrift für angewandte mathematic and mechanic.44.17-29. (1964).
  • Gladwell.I. and R.Wait. A survey of numerical methods for partial differential equations. Oxford university pres; 424 pp. QA377. S96 (1979).
  • Golub,G.H,and Van Loan C.F. Matrix computations, John Hopkins university press Baltimore; 476 pp. QA188. G65 (1963)
  • Hamming.R.W. Numerical methods for scientists and engineers (second edition). McGraw-hill,New York; 721 pp QA297. H28 (1973).
  • Householder.A.S. The numerical treatment of a single nonlinear equation McGraw-Hill, New York;216 pp QA218.H68 (1970).
  • Wilkinson .J.H. The algebraıc eigenvalue problem.Clarendon pres.oxford; 64 pp.QA218.W5 (1965).
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

M. Karakas This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 2 Issue: 13

Cite

APA Karakas, M. (2012). Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences, 2(13), 23-37.
AMA Karakas M. Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences. January 2012;2(13):23-37.
Chicago Karakas, M. “Interpolation And The Lagrange Polynomal”. Manas Journal of Natural Sciences 2, no. 13 (January 2012): 23-37.
EndNote Karakas M (January 1, 2012) Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences 2 13 23–37.
IEEE M. Karakas, “Interpolation And The Lagrange Polynomal”, Manas Journal of Natural Sciences, vol. 2, no. 13, pp. 23–37, 2012.
ISNAD Karakas, M. “Interpolation And The Lagrange Polynomal”. Manas Journal of Natural Sciences 2/13 (January 2012), 23-37.
JAMA Karakas M. Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences. 2012;2:23–37.
MLA Karakas, M. “Interpolation And The Lagrange Polynomal”. Manas Journal of Natural Sciences, vol. 2, no. 13, 2012, pp. 23-37.
Vancouver Karakas M. Interpolation And The Lagrange Polynomal. Manas Journal of Natural Sciences. 2012;2(13):23-37.