Determination of Fatty Acid content of Pleurotus eryngii (DC.) Quél. Growing in the Aegean Region
Year 2022,
, 26 - 31, 30.12.2022
Hakan Allı
,
Sevgin Özderin
,
İbrahim Kıvrak
Abstract
In this study, it was aimed to determine the fatty acid content of Pleurotus eryngii (DC.) Quél. which grows naturally and is consumed as functional food or dietary supplement by the public in Mugla (Bodrum), Izmir ve Çanakkale. The collected mushroom samples were dried at room temperature and extracted with hexane. The 37 fatty acids were scanned in the content of extract. According to the results obtained with the GC/MSD, 17 fatty acids were determined. Major constituent of Pleurotus eryngii mushroom was found to be oleic acid (48.125%), palmitic acid (14.736%), linoleic acid (14.094%), stearic acid (6.469%) and linolelaidic acid (5.128%) were determined. According to the results obtained, Pleurotus eryngii is an edible wild mushroom that can be used in the food and pharmaceutical industry.
References
- Akyüz, M., Kirbağ, S., Karatepe, M., Güvenç, M. & Zengin, F. (2011). Vitamin and fatty acid composition of P. eryngii var. eryngii. Bitlis Eren University Journal of Science and Technology, 1(1), 16-20.
- Bach, F., Helm, C. V., Bellettini, M. B., Maciel, G. M. and Haminiuk, C. W. I. (2017). Edible mushrooms: A potential source of essential amino acids, glucans and minerals. International Journal of Food Science & Technology, 52(11), 2382-2392.
- Canli, K., Altuner, E. M. and Akata, I. (2015). Antimicrobial screening of Mnium stellare. Bangladesh Journal of Pharmacology, 10(2), 321-25.
- Chen, J., Mao, D., Yong, Y., Li, J., Wei, H. and Lu, L. (2012). Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food chemistry, 130(3), 687-694.
- De Silva, D. D., Rapior, S., Sudarman, E., Stadler, M., Xu, J., Aisyah Alias, S. and Hyde, K. D. (2013). Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Diversity, 62(1), 1-40.
- Dimou, D.M., Georgala, A., Komaitis, M. and Aggelis, G. (2002). Mycelial Fatty Acid Composition of Pleurotus spp. and its Application in the Intrageneric Differentiation. Mycol Res, 106(8) 925-929.
- Dıez, V. A. & Alvarez, A. (2001). Compositional and nutritional studies on two wild edible mushrooms from northwest Spain. Food chemistry, 75(4), 417-422.
- Fu, Z., Liu, Y. and Zhang, Q. (2016). A potent pharmacological mushroom: Pleurotus eryngii. Fungal Genom Biol, 6(1), 1-5.
- Govorushko, S., Rezaee, R., Duanov, J., & Tsatsakis, A. (2019). Poison-ing associated with the use of mushrooms: A review of the globalpattern and main characteristics. Food and Chemical Toxicology,128,267–279.
- Hassan, F. R. H., Medany, G. M. and Hussein, S. A. (2010). Cultivation of the king oyster mushroom (Pleurotus eryngii) in Egypt. Australian Journal of Basic and Applied Sciences, 4(1), 99-105.
- Li, S. & Shah, N. P. (2016). Characterization, antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments. Food Chemistry, 197, 240-249.
- Lin, J. T., Liu, C. W., Chen, Y. C., Hu, C. C., Juang, L. D., Shiesh, C. C. and Yang, D. J. (2014). Chemical composition, antioxidant and anti-inflammatory properties for ethanolic extracts from Pleurotus eryngii fruiting bodies harvested at different time. LWT-Food Science and Technology, 55(1), 374-382.
- Kıvrak, İ. (2015). Analytical Methods Applied to Assess Chemical Composition, Nutritional Value and In Vitro Bioactivities of Terfezia olbiensis and Terfezia claveryi from Turkey, Food Analytical Methods, 8,1279–1293.
- Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F. and Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297-305.
- Manzi, P., Aguzzi, A. and Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food chemistry, 73(3), 321-325.
- Mishra, K. K., Pal, R. S., Arunkumar, R., Chandrashekara, C., Jain, S. K. and Bhatt, J. C. (2013). Antioxidant properties of different edible mushroom species and increased bioconversion efficiency of Pleurotus eryngii using locally available casing materials. Food chemistry, 138(2-3), 1557-1563.
- Miyazawa, M. & Usami, A. (2014). Character impact odorants from mushrooms [Pleurotus citrinopileatus, Pleurotus eryngii var. ferulae, Lactarius hatsudake, and Hericium erinaceus (Bull.: Fr.) Pers.] used in Japanese traditional food. Nagoya Gaknin University, 50(2), 1-24.
- Patrabansh, S. & Madan, M. (1997). Studies on cultivation, biological efficiency and chemical analysis of Pleurotus sajor‐caju (FR.) SINGER on different bio‐wastes. Acta Biotechnologica, 17(2), 107-122.
- Pérez-Moreno, J. & Martínez-Reyes, M. (2014). Edible ectomycorrhizal mushrooms: biofactories for sustainable development. In Biosystems engineering: biofactories for food production in the century XXI (pp. 151-233). Springer, Cham.
- Rathore, H., Prasad, S. and Sharma, S. (2017). Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition, 5(2), 35-46.
- Reis, F. S., Martins, A., Barros, L. and Ferreira, I. C. (2012). Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and chemical toxicology, 50(5), 1201-1207.
- Ren, D., Wang, N., Guo, J., Yuan, L. and Yang, X. (2016). Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells. Carbohydrate Polymers, 138, 123-133.
- Rodriguez, E. A. & Royse, D. J. (2007). Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hull/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresource Technology, 98, 1898-1906.
- Sánchez, C. (2004). Modern aspects of mushroom culture technology. Applied microbiology and biotechnology, 64(6), 756-762.
- Sarıkürkçü, C., Karslı Semiz, D., Solak, M. H. ve Harmandar, M. (2004). Muğla Yöresi Yenilebilir Mantar Ekstraktlarının Antioksidant Aktivitelerinin Belirlenmesi. Turkey, 8, 26-28.
- Shi, X., Zhao, Y., Jiao, Y., Shi, T. and Yang, X. (2013). ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7cells. PLoSOne, 8(5),e64266.
- Usami, A., Nakaya, S., Nakahashi, H. and Miyazawa, M. (2014). Chemical composition and aroma evaluation of volatile oils from edible mushrooms (Pleurotus salmoneostramineus and Pleurotus sajor-caju). Journal of Oleo Science, 63(12), 1323-1332.
Ege Bölgesinde Yetişen Körek Mantarı (Pleurotus eryngii (DC.) Quél.)’nın Yağ Asidi İçeriğinin Belirlenmesi
Year 2022,
, 26 - 31, 30.12.2022
Hakan Allı
,
Sevgin Özderin
,
İbrahim Kıvrak
Abstract
Bu çalışmada Muğla (Bodrum), İzmir ve Çanakkale çevresinde doğal olarak yetişen ve halk tarafından gıda olarak tüketilen Pleurotus eryngii (DC.) Quél.’nın yağ asidi içeriği belirlenmesi amaçlanmıştır. Toplanan mantar örnekleri oda şartlarında kurutulmuş ve hekzan ile ekstraksiyon yapılmıştır. Elde edilen ekstrakt içeriğinde 37 adet yağ asidi taraması yapılmıştır. GC/MSD cihazı ile elde edilen sonuçlarına göre 17 adet yağ asidi tespit edilmiştir. Sonuçlar incelendiğinde majör bileşen olarak; oleik asit (%48.125), palmitik asit (%14.736), linoleik asit (%14.094), stearik asit (%6.469) ve linolelaidik asit (%5.128) belirlenmiştir. Elde edilen sonuçlara göre Pleurotus eryngii gıda ve ilaç sektöründe kullanılabilecek yenilebilir yabani bir mantardır.
References
- Akyüz, M., Kirbağ, S., Karatepe, M., Güvenç, M. & Zengin, F. (2011). Vitamin and fatty acid composition of P. eryngii var. eryngii. Bitlis Eren University Journal of Science and Technology, 1(1), 16-20.
- Bach, F., Helm, C. V., Bellettini, M. B., Maciel, G. M. and Haminiuk, C. W. I. (2017). Edible mushrooms: A potential source of essential amino acids, glucans and minerals. International Journal of Food Science & Technology, 52(11), 2382-2392.
- Canli, K., Altuner, E. M. and Akata, I. (2015). Antimicrobial screening of Mnium stellare. Bangladesh Journal of Pharmacology, 10(2), 321-25.
- Chen, J., Mao, D., Yong, Y., Li, J., Wei, H. and Lu, L. (2012). Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food chemistry, 130(3), 687-694.
- De Silva, D. D., Rapior, S., Sudarman, E., Stadler, M., Xu, J., Aisyah Alias, S. and Hyde, K. D. (2013). Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Diversity, 62(1), 1-40.
- Dimou, D.M., Georgala, A., Komaitis, M. and Aggelis, G. (2002). Mycelial Fatty Acid Composition of Pleurotus spp. and its Application in the Intrageneric Differentiation. Mycol Res, 106(8) 925-929.
- Dıez, V. A. & Alvarez, A. (2001). Compositional and nutritional studies on two wild edible mushrooms from northwest Spain. Food chemistry, 75(4), 417-422.
- Fu, Z., Liu, Y. and Zhang, Q. (2016). A potent pharmacological mushroom: Pleurotus eryngii. Fungal Genom Biol, 6(1), 1-5.
- Govorushko, S., Rezaee, R., Duanov, J., & Tsatsakis, A. (2019). Poison-ing associated with the use of mushrooms: A review of the globalpattern and main characteristics. Food and Chemical Toxicology,128,267–279.
- Hassan, F. R. H., Medany, G. M. and Hussein, S. A. (2010). Cultivation of the king oyster mushroom (Pleurotus eryngii) in Egypt. Australian Journal of Basic and Applied Sciences, 4(1), 99-105.
- Li, S. & Shah, N. P. (2016). Characterization, antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments. Food Chemistry, 197, 240-249.
- Lin, J. T., Liu, C. W., Chen, Y. C., Hu, C. C., Juang, L. D., Shiesh, C. C. and Yang, D. J. (2014). Chemical composition, antioxidant and anti-inflammatory properties for ethanolic extracts from Pleurotus eryngii fruiting bodies harvested at different time. LWT-Food Science and Technology, 55(1), 374-382.
- Kıvrak, İ. (2015). Analytical Methods Applied to Assess Chemical Composition, Nutritional Value and In Vitro Bioactivities of Terfezia olbiensis and Terfezia claveryi from Turkey, Food Analytical Methods, 8,1279–1293.
- Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F. and Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297-305.
- Manzi, P., Aguzzi, A. and Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food chemistry, 73(3), 321-325.
- Mishra, K. K., Pal, R. S., Arunkumar, R., Chandrashekara, C., Jain, S. K. and Bhatt, J. C. (2013). Antioxidant properties of different edible mushroom species and increased bioconversion efficiency of Pleurotus eryngii using locally available casing materials. Food chemistry, 138(2-3), 1557-1563.
- Miyazawa, M. & Usami, A. (2014). Character impact odorants from mushrooms [Pleurotus citrinopileatus, Pleurotus eryngii var. ferulae, Lactarius hatsudake, and Hericium erinaceus (Bull.: Fr.) Pers.] used in Japanese traditional food. Nagoya Gaknin University, 50(2), 1-24.
- Patrabansh, S. & Madan, M. (1997). Studies on cultivation, biological efficiency and chemical analysis of Pleurotus sajor‐caju (FR.) SINGER on different bio‐wastes. Acta Biotechnologica, 17(2), 107-122.
- Pérez-Moreno, J. & Martínez-Reyes, M. (2014). Edible ectomycorrhizal mushrooms: biofactories for sustainable development. In Biosystems engineering: biofactories for food production in the century XXI (pp. 151-233). Springer, Cham.
- Rathore, H., Prasad, S. and Sharma, S. (2017). Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition, 5(2), 35-46.
- Reis, F. S., Martins, A., Barros, L. and Ferreira, I. C. (2012). Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and chemical toxicology, 50(5), 1201-1207.
- Ren, D., Wang, N., Guo, J., Yuan, L. and Yang, X. (2016). Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory effects against human hepatoblastoma HepG-2 cells. Carbohydrate Polymers, 138, 123-133.
- Rodriguez, E. A. & Royse, D. J. (2007). Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hull/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresource Technology, 98, 1898-1906.
- Sánchez, C. (2004). Modern aspects of mushroom culture technology. Applied microbiology and biotechnology, 64(6), 756-762.
- Sarıkürkçü, C., Karslı Semiz, D., Solak, M. H. ve Harmandar, M. (2004). Muğla Yöresi Yenilebilir Mantar Ekstraktlarının Antioksidant Aktivitelerinin Belirlenmesi. Turkey, 8, 26-28.
- Shi, X., Zhao, Y., Jiao, Y., Shi, T. and Yang, X. (2013). ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7cells. PLoSOne, 8(5),e64266.
- Usami, A., Nakaya, S., Nakahashi, H. and Miyazawa, M. (2014). Chemical composition and aroma evaluation of volatile oils from edible mushrooms (Pleurotus salmoneostramineus and Pleurotus sajor-caju). Journal of Oleo Science, 63(12), 1323-1332.