Research Article
BibTex RIS Cite

Fixed Points for Mappings on Product Spaces

Year 2018, Volume: 1 Issue: 2, 77 - 80, 10.11.2018

Abstract

Existence of fixed points for a particular cyclic type of mappings on
a finite product of topological spaces is discussed. Existence of fixed points of a
particular cyclic type of set valued mappings on a finite product of metric spaces is
derived. Fixed points of shift type mappings are studied.

References

  • 1. R. Cauty, Solution du probl`eme de point fixe de Schauder, Fund. Math., 170(2001) 231-246 (French)2. T. Dobrowolski, Revisiting Cauty's proof of the Schauder Conjecture, Abstract and applied analysis, 2003:7(2003) 407-433.3. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72(1965) 1004-1006. 4. W. A. Kirk, An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces, Proc. Amer. Math. Soc., 107(1989) 411-415.5. W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed point theory, 4 (2003), 79-89.W. A. Kirk and C. M. Yanez, Nonexpansive and locally nonexpansive mappings in product spaces, Nonlinear analysis, Theory, Methods and Applications, 12(1988) 719-725.6. D. R. Smart, Fixed point theorems, Cambridge University press, Cambridge, 1974.7. P. Vijayaraju, Fixed point theorems for asymptotically nonexpansive mappings in product spaces, Twiwanese J. Mathematics, 2(1998) 97-105.
Year 2018, Volume: 1 Issue: 2, 77 - 80, 10.11.2018

Abstract

References

  • 1. R. Cauty, Solution du probl`eme de point fixe de Schauder, Fund. Math., 170(2001) 231-246 (French)2. T. Dobrowolski, Revisiting Cauty's proof of the Schauder Conjecture, Abstract and applied analysis, 2003:7(2003) 407-433.3. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72(1965) 1004-1006. 4. W. A. Kirk, An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces, Proc. Amer. Math. Soc., 107(1989) 411-415.5. W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed point theory, 4 (2003), 79-89.W. A. Kirk and C. M. Yanez, Nonexpansive and locally nonexpansive mappings in product spaces, Nonlinear analysis, Theory, Methods and Applications, 12(1988) 719-725.6. D. R. Smart, Fixed point theorems, Cambridge University press, Cambridge, 1974.7. P. Vijayaraju, Fixed point theorems for asymptotically nonexpansive mappings in product spaces, Twiwanese J. Mathematics, 2(1998) 97-105.
There are 1 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

İruthaya Raj 0000-0002-0743-988X

Ganesa Moorthy This is me

Publication Date November 10, 2018
Published in Issue Year 2018 Volume: 1 Issue: 2

Cite

APA Raj, İ., & Moorthy, G. (2018). Fixed Points for Mappings on Product Spaces. Mathematical Advances in Pure and Applied Sciences, 1(2), 77-80.
AMA Raj İ, Moorthy G. Fixed Points for Mappings on Product Spaces. MAPAS. November 2018;1(2):77-80.
Chicago Raj, İruthaya, and Ganesa Moorthy. “Fixed Points for Mappings on Product Spaces”. Mathematical Advances in Pure and Applied Sciences 1, no. 2 (November 2018): 77-80.
EndNote Raj İ, Moorthy G (November 1, 2018) Fixed Points for Mappings on Product Spaces. Mathematical Advances in Pure and Applied Sciences 1 2 77–80.
IEEE İ. Raj and G. Moorthy, “Fixed Points for Mappings on Product Spaces”, MAPAS, vol. 1, no. 2, pp. 77–80, 2018.
ISNAD Raj, İruthaya - Moorthy, Ganesa. “Fixed Points for Mappings on Product Spaces”. Mathematical Advances in Pure and Applied Sciences 1/2 (November 2018), 77-80.
JAMA Raj İ, Moorthy G. Fixed Points for Mappings on Product Spaces. MAPAS. 2018;1:77–80.
MLA Raj, İruthaya and Ganesa Moorthy. “Fixed Points for Mappings on Product Spaces”. Mathematical Advances in Pure and Applied Sciences, vol. 1, no. 2, 2018, pp. 77-80.
Vancouver Raj İ, Moorthy G. Fixed Points for Mappings on Product Spaces. MAPAS. 2018;1(2):77-80.