Research Article
BibTex RIS Cite

İnovatif doğal medikal ürünler için bazı denizel makroalglerin değerlendirilmesi

Year 2020, Volume: 2 Issue: 2, 57 - 64, 31.12.2020

Abstract

Araştırmada inovatif doğal medikal için dört farklı denizel makroalg türünün biyokimyasal kompozisyonları, besin maddesi bileşenleri (Nitrojen (N), Karbon (C), Hidrojen (H)) ve DPPH (2,2-difenil-1-pikrilhidrazil) serbest radikal süpürme kapasitesi üzerinden antioksidan özellikleri ve antimikrobiyal aktiviteleri belirlenmiştir. Jania rubens, Hypnea musciformis, Padina pavonica ve Ulva rigida türü makroalgler İskenderun Körfezi’nden toplanmıştır. U. rigida’nın türler arasında kuru ağırlıkta en yüksek protein (%12,605) ve lipit (%1,54) içeriğine sahip
olduğu belirlenmiştir. Türlerdeki kül içeriğinin kuru ağırlık olarak %22.365 -76.646 arasında olduğu tespit edilmiştir. En yüksek DPPH radikal süpürme özelliği gösteren tür %69,053 inhibisyon yüzdesi ile H. musciformis olarak belirlenmiş ve bu tür için yapılan antimikrobiyal etkinlik testlerinde, Escherichia coli ve Candida albicans'a karşı etkili olduğu belirlenmiştir.

References

  • Abd El-Baky, H. H., El Baz, F. K. & El-Baroty, G. S. (2008). Evaluation of marine alga Ulva lactuca L. as a source of natural preservative ingredient. Electronic Journal of Environmental, Agricultural and Food Chemistry, 7: 3353-3367.
  • Ahmad, F., Sulaiman, M. R., Saimon, W., Yee, C. F. & Matanjun, P. (2012). Proximate compositions and total phenolic content of selected edible seaweed from Semporna, Sabah, Malaysia. Borneo Science, 31: 85-96.
  • Aguilar, C. N. & Gutiérrez-Sánchez, G. (2001). Review sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International, 7: 373-382.
  • Albayrak, S., Sağdıç, O. & Aksoy, A. (2010). Bitkisel ürünlerin ve gıdaların antioksidan kapasitelerinin belirlenmesinde kullanılan yöntemler. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(4): 401-409.
  • Almeida Mendes, M. S. (2012). Functional activity of seaweed extracts from north Portuguese coast. Universidade CatÓlica Portuguesa, Escola Superior de Biotecnologia, Mikrobiyoloji Bölümü, Yüksek Lisans Tezi, Eylül 2012, Porto/ Portekiz, 49 s.
  • Ballantine ,L. D., Gerwick, H. W., Velez, M. S., Alexander, E. & Guevara, P. (1987). Antibiotic activity of lipid-soluble extracts from Caribbean marine algae. Hydrobiologia, 151: 463-469.
  • Barnes, J. (2002). Quality, efficacy and safety of complementary medicines: fashions, facts and the future. Part I, Regulation and quality. British Journal of Clinical Pharmacology, 55(3): 226-233.
  • Bligh, E. G. & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal Biochemistry and Physiology, 37: 911-917.
  • Chandini, S. K., Ganesan, P. & Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107: 707-713.
  • Claudio, F. & Stendardo, B. (1966). An exmerimental contribution to the clinical use of an algal phytocolloid (Algasol T331) in oncology. Proceedings of the Fifth International Seaweed Symposium, Halifax, p 369.
  • Cox, S., Abu-Ghannam, N. & Gupta, S. (2009). An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17(1): 205-220.
  • Desbois, P. A. & Smith, J. V. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85: 1629-1642.
  • Duan, X. J., Zhang, W. W., Li, X. M. & Wang, B. G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95: 37-43.
  • Dumas, J. B. A. (1831). Procedes de I’ analyse organique. Annales de Chimie et de Physique, 247: 198-213.
  • El Baz, F. K., El-Baroty, G. S., Abd El Baky, H. H., Abd El-Salam, O. I. & Ibrahim, E. A. (2013). Structural characterization and biological activity of sulfolipids from selected marine algae. Grasasy Aceites, 64: 561-571.
  • Espeche, M. E., Fraile, E. R. & Mayer, A. M. S. (1984). Screening of Argentine marine algae for antimicrobial activity. Hydrobiologia, 116/117: 525-528.
  • Fathy, A. A. (2007). Evaluation of nutritional composition of some attached and drifted marine algae from Alexandria, Egypt. Egyptian Journal of Phycology, 8: 131-141.
  • Gupta, S., Cox, S., Rajauria, G., Jaiswal, A.K. & Abu-Ghannam, N. (2012). Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts. Food and Bioprocess Technology, 5(5): 1907-1916.
  • Gür, İ. (2015). İskenderun Körfezi’nde dağılım gösteren bazı makroalg türlerinin pigment, antioksidan ve besin bileşenlerinin mevsimsel olarak incelenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye, 71 s.
  • Huang, D., Ou B. & Prior R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agriculture Food Chemistry, 53: 4303-4310.
  • Horie, S., Tsutsumi, S., Takada, Y. & Kimura, J. (2008). Antibacterial quinone metabolites from the brown alga, Sargassum sagamianum. Bulletin of the Chemical Society of Japan, 81(9): 1125-1130.
  • Hosokawa, M., Bhaskar, N., Sashima, T. & Miyashita, K. (2006). Fucoxanthin as a bioactive and nutritionally beneficial marine carotenoid: a review. Carotenoid Science, 10: 15-28.
  • İrkin, L. C. & Erduğan H. (2017). Investigation of seasonal variations in biochemical composition of some red algae distributed in the strait of Çanakkale (Dardanelles), Turkey. Archives of Applied Science Research, 9(2): 1-8.
  • Lim, S. N., Cheung, P. C. K., Ooi, V. E. C. & Ang, P. O. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed Sargassum siliquastrum. Journal of Agricultural Food Chemistry, 50: 3862-3866.
  • Matsukawa, R., Dubinsky, Z., Kishimoto, E., Masaki, K., Masuda, Y., Takeuchi, T. & Karube, I. (1997). A comparison of screening methods for antioxidant activity in seaweeds. Journal of Applied Phycology, 9(1): 29-35.
  • Mcdermid, K. J. & Stuercke, B. (2003). Nutritional composition of edible Hawaiian seaweeds. Journal of Applied Phycology, 15: 513-524.
  • Mot, C. A., Dumitrescu, S. R. & Sarbu, C. (2011). Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV-VIS spectroscopic data. Journal of Food Composite and Analysis, 24: 516-522.
  • Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Nakamura, T. (2002). Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobiology Chemotherapy, 50 (6), 889-893.
  • Palanivelu, A., Darsis, A. & Arunkumar, K. (2012). Nutraceutical values of seaweeds found along the Coast of Thondi (Palk Bay, India) with specific investigation on fatty acids methyl esters through GC/MS. Journal of Green Bioenergy, 1(1): 3-18.
  • Parthiban, C., Saranya, C., Girija K., Hemalatha, A., Suresh, M. & Anantharaman, P. (2013). Biochemical composition of some selected seaweeds from Tuticorin coast. Advances in Applied Science Research, 4(3): 362-366.
  • Plaza, M., Herrero, M., Cifuentes, A. & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16): 7159–7170.
  • Polat, S. & Özoğul, Y. (2009). Fatty acid, mineral and proximate composition of some seaweeds from the northeastern Mediterranean coast. Italian Journal of Food Science, 21: 317-324.
  • Polat, S. & Özoğul, Y. (2013). Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast. Oceanologia, 55(2): 375–391.
  • Radhika, D., Veerabahu, C. & Priya, R. (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar coast, South India. Asian Journal of Pharmaceutical and Clinical Research, 5(4): 89-90.
  • Ramadan, F. M., Asker, S. M. M. & Zeinab, I. K. (2008). Functional bioactive compounds and biological activities of Spirulina platensis lipids. Czech Journal of Food Sciences, 26, 211-222.
  • Saha, K., Lajis, N. H., Israf, D. A., Hamzah, A. S., Khozirah, S., Khamis, S. & Syahida, A., (2004). Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. Journal of Ethnopharmacology, 92: 263-267.
  • Salem, W. M., Galal, H. & Nasr El-Deen, F. (2011). Screening for antibacterial activities in some marine algae from the Red sea (Hurghada, Egypt). African Journal Microbiology Research, 5 (15): 2160-2167.
  • SPSS, IBM Corp. Released (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.
  • Srivastava, N., Saurav, K., Mohanasrinivasan, V., Kannabiran, K. & Singh, M. (2010). Antibacterial potential of macroalgae collected from the Madappam coast, India. British Journal of Pharmacology and Toxicology, 1(2): 72-76.
  • Timmermans, K. R., Gerringa, L. J. A., de Baar, H. J. W., van der Wagt, B., Veldhuis, M. J. W., de Jong, J. T. M., & Boye, M. (2001). Growth rates of large and small Southern Ocean diatoms in relation to availability o iron in natural seawater. Limnology and Oceanography, 46(2): 260-266.
  • Turan, F., Özgün, S., Sayın, S. & Özyılmaz, G. (2015). Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. Journal of Black Sea/Mediterranean Environment, 21(3): 239-249.
  • Vollenweider, R. A. (1974). A manual on methods for measuring primary productivity in aquatic environments. IBP Handbook, No. 12. 2nd edition, Oxford, UK Blackwell Scientific Publication.
  • Wang, B. G., Zhang, W. W., Duan, X. J. & Li, X. M. (2009). In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chemistry, 113: 1101-1105.
  • Watson, S. B. & Cruz-Rivera, E. (2003). Algal chemical ecology: an introduction to the special issue. Phycologia, 42(4): 319-323.
  • Ye, H., Zhou, C., Sun, Y., Zhang, X., Liu, J., Hu, Q. & Zeng, X. (2009). Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum. European Food Research Technology, 230: 101-109.
  • Yıldız, G., Çelikler, S., Vatan, Ö. & Dere, Ş. (2012). Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida (C. Agardh.) International Journal of Food Properties, 15: 1182-1189.
  • Zaragoza, M.C., Lopez, D., Saiz, M.P., Poquet, M., Perez, J., Puig Parellada, P., Marmol, F., Simonetti, P., Gardana, C., Lerat, Y., Burtin, P., Inisan, C., Rousseau, I., Besnard, M. & Mitjavila, M.T. (2008). Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. Journal of Agricultural and Food Chemistry, 56 (17), 7773-7780.

Evaluation of marine macroalgae for innovative natural medical products

Year 2020, Volume: 2 Issue: 2, 57 - 64, 31.12.2020

Abstract

In the research, biochemical compositions of four different marine macroalgae species, nutrient components (Nitrogen (N), Carbon (C), Hydrogen (H)) and DPPH (2,2-diphenyl-1-picrilhydrazyl) free radical sweeping capacity for innovative natural medicine antioxidant properties and antimicrobial activities were determined. Jania rubens, Hypnea musciformis, Padina pavonica and Ulva rigida were collected from Iskenderun Bay. It has been determined that U. rigida has the highest protein (12.605%) and lipid (1.54%) dry weight among the species. It was determined that the ash content in the species was between 22.365 and 76.646% dry weight. The species with the highest DPPH radical scavenging feature was determined as H. musciformis with 69.053% inhibition percentage and it was found to be effective against Escherichia coli and Candida albicans in the antimicrobial efficacy tests for this species.

References

  • Abd El-Baky, H. H., El Baz, F. K. & El-Baroty, G. S. (2008). Evaluation of marine alga Ulva lactuca L. as a source of natural preservative ingredient. Electronic Journal of Environmental, Agricultural and Food Chemistry, 7: 3353-3367.
  • Ahmad, F., Sulaiman, M. R., Saimon, W., Yee, C. F. & Matanjun, P. (2012). Proximate compositions and total phenolic content of selected edible seaweed from Semporna, Sabah, Malaysia. Borneo Science, 31: 85-96.
  • Aguilar, C. N. & Gutiérrez-Sánchez, G. (2001). Review sources, properties, applications and potential uses of tannin acyl hydrolase. Food Science and Technology International, 7: 373-382.
  • Albayrak, S., Sağdıç, O. & Aksoy, A. (2010). Bitkisel ürünlerin ve gıdaların antioksidan kapasitelerinin belirlenmesinde kullanılan yöntemler. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(4): 401-409.
  • Almeida Mendes, M. S. (2012). Functional activity of seaweed extracts from north Portuguese coast. Universidade CatÓlica Portuguesa, Escola Superior de Biotecnologia, Mikrobiyoloji Bölümü, Yüksek Lisans Tezi, Eylül 2012, Porto/ Portekiz, 49 s.
  • Ballantine ,L. D., Gerwick, H. W., Velez, M. S., Alexander, E. & Guevara, P. (1987). Antibiotic activity of lipid-soluble extracts from Caribbean marine algae. Hydrobiologia, 151: 463-469.
  • Barnes, J. (2002). Quality, efficacy and safety of complementary medicines: fashions, facts and the future. Part I, Regulation and quality. British Journal of Clinical Pharmacology, 55(3): 226-233.
  • Bligh, E. G. & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal Biochemistry and Physiology, 37: 911-917.
  • Chandini, S. K., Ganesan, P. & Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107: 707-713.
  • Claudio, F. & Stendardo, B. (1966). An exmerimental contribution to the clinical use of an algal phytocolloid (Algasol T331) in oncology. Proceedings of the Fifth International Seaweed Symposium, Halifax, p 369.
  • Cox, S., Abu-Ghannam, N. & Gupta, S. (2009). An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. International Food Research Journal, 17(1): 205-220.
  • Desbois, P. A. & Smith, J. V. (2010). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85: 1629-1642.
  • Duan, X. J., Zhang, W. W., Li, X. M. & Wang, B. G. (2006). Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry, 95: 37-43.
  • Dumas, J. B. A. (1831). Procedes de I’ analyse organique. Annales de Chimie et de Physique, 247: 198-213.
  • El Baz, F. K., El-Baroty, G. S., Abd El Baky, H. H., Abd El-Salam, O. I. & Ibrahim, E. A. (2013). Structural characterization and biological activity of sulfolipids from selected marine algae. Grasasy Aceites, 64: 561-571.
  • Espeche, M. E., Fraile, E. R. & Mayer, A. M. S. (1984). Screening of Argentine marine algae for antimicrobial activity. Hydrobiologia, 116/117: 525-528.
  • Fathy, A. A. (2007). Evaluation of nutritional composition of some attached and drifted marine algae from Alexandria, Egypt. Egyptian Journal of Phycology, 8: 131-141.
  • Gupta, S., Cox, S., Rajauria, G., Jaiswal, A.K. & Abu-Ghannam, N. (2012). Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts. Food and Bioprocess Technology, 5(5): 1907-1916.
  • Gür, İ. (2015). İskenderun Körfezi’nde dağılım gösteren bazı makroalg türlerinin pigment, antioksidan ve besin bileşenlerinin mevsimsel olarak incelenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye, 71 s.
  • Huang, D., Ou B. & Prior R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agriculture Food Chemistry, 53: 4303-4310.
  • Horie, S., Tsutsumi, S., Takada, Y. & Kimura, J. (2008). Antibacterial quinone metabolites from the brown alga, Sargassum sagamianum. Bulletin of the Chemical Society of Japan, 81(9): 1125-1130.
  • Hosokawa, M., Bhaskar, N., Sashima, T. & Miyashita, K. (2006). Fucoxanthin as a bioactive and nutritionally beneficial marine carotenoid: a review. Carotenoid Science, 10: 15-28.
  • İrkin, L. C. & Erduğan H. (2017). Investigation of seasonal variations in biochemical composition of some red algae distributed in the strait of Çanakkale (Dardanelles), Turkey. Archives of Applied Science Research, 9(2): 1-8.
  • Lim, S. N., Cheung, P. C. K., Ooi, V. E. C. & Ang, P. O. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed Sargassum siliquastrum. Journal of Agricultural Food Chemistry, 50: 3862-3866.
  • Matsukawa, R., Dubinsky, Z., Kishimoto, E., Masaki, K., Masuda, Y., Takeuchi, T. & Karube, I. (1997). A comparison of screening methods for antioxidant activity in seaweeds. Journal of Applied Phycology, 9(1): 29-35.
  • Mcdermid, K. J. & Stuercke, B. (2003). Nutritional composition of edible Hawaiian seaweeds. Journal of Applied Phycology, 15: 513-524.
  • Mot, C. A., Dumitrescu, S. R. & Sarbu, C. (2011). Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV-VIS spectroscopic data. Journal of Food Composite and Analysis, 24: 516-522.
  • Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I. & Nakamura, T. (2002). Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobiology Chemotherapy, 50 (6), 889-893.
  • Palanivelu, A., Darsis, A. & Arunkumar, K. (2012). Nutraceutical values of seaweeds found along the Coast of Thondi (Palk Bay, India) with specific investigation on fatty acids methyl esters through GC/MS. Journal of Green Bioenergy, 1(1): 3-18.
  • Parthiban, C., Saranya, C., Girija K., Hemalatha, A., Suresh, M. & Anantharaman, P. (2013). Biochemical composition of some selected seaweeds from Tuticorin coast. Advances in Applied Science Research, 4(3): 362-366.
  • Plaza, M., Herrero, M., Cifuentes, A. & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16): 7159–7170.
  • Polat, S. & Özoğul, Y. (2009). Fatty acid, mineral and proximate composition of some seaweeds from the northeastern Mediterranean coast. Italian Journal of Food Science, 21: 317-324.
  • Polat, S. & Özoğul, Y. (2013). Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast. Oceanologia, 55(2): 375–391.
  • Radhika, D., Veerabahu, C. & Priya, R. (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar coast, South India. Asian Journal of Pharmaceutical and Clinical Research, 5(4): 89-90.
  • Ramadan, F. M., Asker, S. M. M. & Zeinab, I. K. (2008). Functional bioactive compounds and biological activities of Spirulina platensis lipids. Czech Journal of Food Sciences, 26, 211-222.
  • Saha, K., Lajis, N. H., Israf, D. A., Hamzah, A. S., Khozirah, S., Khamis, S. & Syahida, A., (2004). Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. Journal of Ethnopharmacology, 92: 263-267.
  • Salem, W. M., Galal, H. & Nasr El-Deen, F. (2011). Screening for antibacterial activities in some marine algae from the Red sea (Hurghada, Egypt). African Journal Microbiology Research, 5 (15): 2160-2167.
  • SPSS, IBM Corp. Released (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.
  • Srivastava, N., Saurav, K., Mohanasrinivasan, V., Kannabiran, K. & Singh, M. (2010). Antibacterial potential of macroalgae collected from the Madappam coast, India. British Journal of Pharmacology and Toxicology, 1(2): 72-76.
  • Timmermans, K. R., Gerringa, L. J. A., de Baar, H. J. W., van der Wagt, B., Veldhuis, M. J. W., de Jong, J. T. M., & Boye, M. (2001). Growth rates of large and small Southern Ocean diatoms in relation to availability o iron in natural seawater. Limnology and Oceanography, 46(2): 260-266.
  • Turan, F., Özgün, S., Sayın, S. & Özyılmaz, G. (2015). Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. Journal of Black Sea/Mediterranean Environment, 21(3): 239-249.
  • Vollenweider, R. A. (1974). A manual on methods for measuring primary productivity in aquatic environments. IBP Handbook, No. 12. 2nd edition, Oxford, UK Blackwell Scientific Publication.
  • Wang, B. G., Zhang, W. W., Duan, X. J. & Li, X. M. (2009). In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chemistry, 113: 1101-1105.
  • Watson, S. B. & Cruz-Rivera, E. (2003). Algal chemical ecology: an introduction to the special issue. Phycologia, 42(4): 319-323.
  • Ye, H., Zhou, C., Sun, Y., Zhang, X., Liu, J., Hu, Q. & Zeng, X. (2009). Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum. European Food Research Technology, 230: 101-109.
  • Yıldız, G., Çelikler, S., Vatan, Ö. & Dere, Ş. (2012). Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida (C. Agardh.) International Journal of Food Properties, 15: 1182-1189.
  • Zaragoza, M.C., Lopez, D., Saiz, M.P., Poquet, M., Perez, J., Puig Parellada, P., Marmol, F., Simonetti, P., Gardana, C., Lerat, Y., Burtin, P., Inisan, C., Rousseau, I., Besnard, M. & Mitjavila, M.T. (2008). Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. Journal of Agricultural and Food Chemistry, 56 (17), 7773-7780.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Maritime Engineering
Journal Section Research Articles
Authors

Nurdan Ünal 0000-0002-1970-8709

Aycan Aras

Oğulcan Habiboğlu 0000-0002-8974-2777

Sinem Uğur 0000-0003-4309-7415

Mehmet Naz 0000-0002-5129-8498

Selin Sayın 0000-0002-7497-388X

Publication Date December 31, 2020
Submission Date July 19, 2020
Acceptance Date September 9, 2020
Published in Issue Year 2020 Volume: 2 Issue: 2

Cite

APA Ünal, N., Aras, A., Habiboğlu, O., Uğur, S., et al. (2020). İnovatif doğal medikal ürünler için bazı denizel makroalglerin değerlendirilmesi. Marine and Life Sciences, 2(2), 57-64.

Flag Counter